Some Comments on the Quantum-Mechanical Treatment of Defects in Ionic Crystals

  • Jean-Louis Calais


Per-Olov Löwdin’s thesis1) “A theoretical investigation into some properties of ionic crystals”, constitutes a landmark in the theory of the electronic structure of ionic crystals. By combining mathematical ingenuity and an enormous amount of numerical work without the help of electronic computers Löwdin was able to get not only very good agreement between experimental and theoretical values for a number of physical parameters for nearly all the alkali halides, but also and of greater importance to introduce a new physical concept. His calculations of cohesive energies and equilibrium lattice constants gave a quantum mechanical background and “explanation” of the Born-Mayer theory. But his quantum mechanical treatment went far beyond the Born-Mayer model, since it contained ingredients, which could explain the deviations from the Cauchy relations for the elastic constants. It is particularly interesting to notice that the effective many-ion forces, which are responsible for these deviations, actually came out of the calculations as a result of the careful treatment of the overlap between the ions. Löwdin’s alkali halide work shows what in a favourable case can be achieved by an “ab initio” calculation.


Perfect Crystal Ionic Crystal Alkali Halide Wannier Function Substitutional Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P-O Löwdin, Thesis, Almqvist & Wiksell, Uppsala 1948.Google Scholar
  2. 2.
    J-L Calais, Int. J. Quantum Chem. 98, 497 (1975).Google Scholar
  3. 3.
    O. Ra, Int. J. Quantum Chem. 10, 5, 57 (1976).CrossRefGoogle Scholar
  4. 4.
    W. Kohn, Phys. Rev. B7, 4388 (1973).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    W. Kohn, Phys. Rev. B10, 382 (1974).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    A.B. Lidiard in “Orbital Theories of Molecules and Solids”, ed. by N. March, Clarendon Press, Oxford 1974.Google Scholar
  7. 7.
    N.F. Mott, M.J. Littleton, Trans. Faraday Soc. 34, 485 (1938).CrossRefGoogle Scholar
  8. 8.
    H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957).Google Scholar
  9. 9.
    J.P. Hardy, J.W. Flocken, Critical Reviews in Solid State Sciences 1, 605 (1970).CrossRefGoogle Scholar
  10. 10.
    B.G. Dick, T.P. Das, Phys. Rev. 127, 1053 (1962).ADSCrossRefGoogle Scholar
  11. 11.
    T.P. Das, B.G. Dick, Phys. Rev. 127, 1063 (1962).ADSCrossRefGoogle Scholar
  12. 12.
    T.P. Das, Phys. Rev. 140, A1957 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    B.G. Dick, Phys. Rev. 145, 609 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    R.J. Quigley, T.P. Das, Phys. Rev. 164, 1185 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    S.O. Lundqvist, Arkiv Fysik 12, 263 (1957).MathSciNetGoogle Scholar
  16. 16.
    P-O Löwdin, Adv. Phys. 5, 1 (1956).ADSCrossRefGoogle Scholar
  17. 17.
    R. Bauer, phys. stat. sol. (b) 50, 225 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    R. Bauer, J. Nonmetals 1, 257 (1973).Google Scholar
  19. 19.
    A.B. Kunz, phys. stat. sol. (b) 36, 301 (1969).ADSCrossRefGoogle Scholar
  20. 20.
    W.H. Adams, J. Chem. Phys. 37, 89 (1961)ADSCrossRefGoogle Scholar
  21. W.H. Adams, J. Chem. Phys. 37, 2009 (1962).Google Scholar
  22. 21.
    T.L. Gilbert in “Molecular Orbitals in Chemistry, Physics, andGoogle Scholar
  23. Biology“, ed. P-O Löwdin, Acad. Press 1964.Google Scholar
  24. 22.
    W. Kohn, J. Onffroy, Phys. Rev. B8, 2485 (1973).ADSCrossRefGoogle Scholar
  25. 23.
    J.G. Gay, J.R. Smith, Phys. Rev. B9, 4151 (1974).ADSCrossRefGoogle Scholar
  26. 24.
    G.F. Koster, J.C. Slater, Phys. Rev. 95, 1167 (1954).ADSzbMATHCrossRefGoogle Scholar
  27. 25.
    P-O Löwdin, J. Mol. Spectroscopy 14, 119 (1964).Google Scholar
  28. 26.
    J.R. Smith, J.G. Gay, Phys. Rev. Lett. 32, 774 (1974).ADSCrossRefGoogle Scholar
  29. 27.
    S.C. Ying, J.R. Smith, W. Kohn, Phys. Rev. B11, 1483 (1975).ADSCrossRefGoogle Scholar
  30. 28.
    J.G. Gay, J.R. Smith, Phys. Rev. B11, 4906 (1975).ADSCrossRefGoogle Scholar
  31. 29.
    W. Kohn, Phys. Rev. 115, 809 (1959).MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 30.
    D.S. Bulyanitsa, Y.E. Svetlov, Soviet Phys.-Solid State 4, 981 (1962).Google Scholar
  33. 31.
    J. des Cloizeaux, Phys. Rev. 129, 554 (1963).MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 32.
    J. des Cloizeaux, Phys. Rev. 135, A685 (1964).ADSCrossRefGoogle Scholar
  35. 33.
    J. des Cloizeaux, Phys. Rev. 135, A698 (1964).ADSCrossRefGoogle Scholar
  36. 34.
    B. Lix, phys. stat. sol. (b) 44, 411 (1971).ADSCrossRefGoogle Scholar
  37. 35.
    G. Kögel, phys. stat. sol. (b) 44, 577 (1971).ADSCrossRefGoogle Scholar
  38. 36.
    E. Krüger, phys. stat. sol. (b) 52, 215 (1972)ADSCrossRefGoogle Scholar
  39. E. Krüger, phys. stat. sol. 52, 519 (1972).ADSCrossRefGoogle Scholar
  40. 37.
    M. Kertész, G. Biczô, phys. stat. sol. (b) 60, 249 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Jean-Louis Calais
    • 1
  1. 1.Quantum Chemistry GroupUniversity of UppsalaUppsalaSweden

Personalised recommendations