Skip to main content

Energy Migration and Fluorescence Depolarization: Structural Studies of Ethidium Bromide-Nucleic Acid Complexes

  • Chapter
Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 69))

  • 181 Accesses

Abstract

Excitation energy transfer may occur between like fluorescent molecules in solutions of sufficiently high concentration. The excitation energy of a molecule which absorbs a photon at time zero may jump from molecule to molecule until emission occurs at some later time t. Thus a fluorescence photon, which in dilute solution is emitted by the absorbing molecule, may in concentrated solution be emitted by one of the molecules which surround the initially excited one. This process broadens the angular distribution of the transition moments of the emitting molecules and consequently gives rise to a depolarization of the emission. The rate of a transfer step depends on the mutual distance and orientation between the donor and acceptor molecules. Therefore the measurement of fluorescence anisotropy decay due to energy transfer should provide information on the geometrical arrangement of an array of chromophores. In the following, an application of this principle to the study of ethidium-nucleic acid and ethidium-chromatin complexes is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Th. Förster, Ann.Phys. 2 55 (1948)

    Article  MATH  Google Scholar 

  2. Th. Förster, in Modern Quantum Chemistry, O. Sinanoglu, ed., Academic Press, New York, Part III, 1965, p. 93.

    Google Scholar 

  3. L.S. Lerman, J.Mol.Biol. 3 18 (1961)

    Article  Google Scholar 

  4. W. Bauer and J. Vinograd, J.Mol.Biol. 47 419 (1970)

    Article  Google Scholar 

  5. D.M. Crothers, Biopolymers 6 575 (1968)

    Article  Google Scholar 

  6. J.B. Le Pecq and C. Paoletti, J.Mol.Biol. 27 87 (1967)

    Article  Google Scholar 

  7. J.D. Watson and F.H.C. Crick, Nature 171 737 (1953)

    Article  ADS  Google Scholar 

  8. S. Arnott, in Progress in Biophysics and Molecular Biology, Volume 21, J.A.V. Butler and D. Noble eds., Pergamon Press, New York, 1970, p. 265.

    Google Scholar 

  9. D.C. Goodwin and J. Brahms, Nucleic Acids Res. 5 835 (1978)

    Article  Google Scholar 

  10. D. Genest, Ph. Wahl and J.C. Auchet, Biophys.Chem. 1 266 (1974)

    Article  Google Scholar 

  11. Ph. Wahl, D. Genest and J.L. Tichadou, Biophys.Chem. 6 311 (1977)

    Article  Google Scholar 

  12. J. von Neumann, Collected works,Pergamon Press, Oxford, Volume 5, 1963, p.751.

    Google Scholar 

  13. J.M. Hammersley and D.C. Handscomb, Les méthodes de Monte-Carlo, Dunod, Paris, 1967.

    MATH  Google Scholar 

  14. D. Genest and Ph. Wahl, in Dynamical Aspects of Conformation Changes in Biological Macromolecules, C. Sadron, ed., Reidel, Dordrecht, 1973, p. 367.

    Google Scholar 

  15. J.L. Tichadou, D. Genest, Ph. Wahl and G. Aubel-Sadron, Biophys.Chem. 3 142 (1975)

    Article  Google Scholar 

  16. D. Genest and PhT Wahl, Biophys.Chem. 7 317 (1978)

    Article  Google Scholar 

  17. J. Paoletti and J.B. Le Pecq, J.Mol.Biol. 59 43 (1971)

    Article  Google Scholar 

  18. C.A. Parker and W.T. Rees, Analyst 85 587 (1960)

    Article  ADS  Google Scholar 

  19. M. Noll, Nature 251 249 (1974)

    Article  ADS  Google Scholar 

  20. C. Houssier, B. Hardy and E. Fredericq, Biopolymers 13 1141 (1974)

    Article  Google Scholar 

  21. P.V. Giacomoni and M. Le Bret, FEBS Lett. 29 227 (1973)

    Article  Google Scholar 

  22. M. Le Bret and O. Chalvet, J.Mol.Struct. 37 299 (1977)

    Article  ADS  Google Scholar 

  23. I. Zimmerman and H.W. Zimmerman, Ber.Bunsenges.Phys.Chem. 81 81 (1977)

    Article  Google Scholar 

  24. W.J. Pigram, W. Fuller and M.E. Davies, J.Mol.Biol. 80 361 (1973)

    Article  Google Scholar 

  25. D.R. Hewish and L.A. Burgoyne, Biochem.Biophys.Res.Commun. 52 504 (1973)

    Article  Google Scholar 

  26. R.D. Kornberg, Science 184 868 (1974)

    Article  ADS  Google Scholar 

  27. A.L. Olins and D.E. Olins, Science 183 330 (1974)

    Article  ADS  Google Scholar 

  28. P. Oudet, M. Gross-Bellard and P. Chambon, Cell 4 281 (1975)

    Article  Google Scholar 

  29. E. Van Holde, C.G. Sahasrabuddhe and B.R. Shaw, Nucleic Acids Res. 11 1579 (1974)

    Google Scholar 

  30. J.J. Lawrence and M. Daune, Biochemistry 15 3301 (1976)

    Article  Google Scholar 

  31. L.M. Angerer, S. Georghiou and E.N. Moudrianakis, Biochemistry 13 1075 (1974)

    Article  Google Scholar 

  32. P.F. Lurquin and V.L. Seligy, Chem.Biol.Interact. 13 27 (1976)

    Article  Google Scholar 

  33. J. Paoletti, B.B. Magee and P.T. Magee, Biochemistry 16 351 (1976)

    Article  Google Scholar 

  34. M. Erard, G.C. Das, G. de Murcia, A. Mazen, J. Pouyet, M. Champagne and M. Daune, Nucleic Acids Res. 6 3231 (1979)

    Article  Google Scholar 

  35. J.C. Wang, J.Mol.Biol. 89 783 (1974)

    Article  Google Scholar 

  36. L.F. Liu and J.C. Wang, Biochim.Biophys.Acta 395 405 (1975)

    Article  Google Scholar 

  37. D. Genest, G. Sabeur, Ph. Wahl and J.C. Auchet, Biophys.Chem. 13 77 (1981)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Genest, D., Wahl, P. (1983). Energy Migration and Fluorescence Depolarization: Structural Studies of Ethidium Bromide-Nucleic Acid Complexes. In: Cundall, R.B., Dale, R.E. (eds) Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology. NATO Advanced Science Institutes Series, vol 69. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1634-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1634-4_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1636-8

  • Online ISBN: 978-1-4757-1634-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics