Energy Migration and Fluorescence Depolarization: Structural Studies of Ethidium Bromide-Nucleic Acid Complexes

  • D. Genest
  • Ph. Wahl
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 69)


Excitation energy transfer may occur between like fluorescent molecules in solutions of sufficiently high concentration. The excitation energy of a molecule which absorbs a photon at time zero may jump from molecule to molecule until emission occurs at some later time t. Thus a fluorescence photon, which in dilute solution is emitted by the absorbing molecule, may in concentrated solution be emitted by one of the molecules which surround the initially excited one. This process broadens the angular distribution of the transition moments of the emitting molecules and consequently gives rise to a depolarization of the emission. The rate of a transfer step depends on the mutual distance and orientation between the donor and acceptor molecules. Therefore the measurement of fluorescence anisotropy decay due to energy transfer should provide information on the geometrical arrangement of an array of chromophores. In the following, an application of this principle to the study of ethidium-nucleic acid and ethidium-chromatin complexes is described.


Excitation Energy Fluorescence Decay Transition Moment Energy Migration Excitation Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Th. Förster, Ann.Phys. 2 55 (1948)zbMATHCrossRefGoogle Scholar
  2. 2.
    Th. Förster, in Modern Quantum Chemistry, O. Sinanoglu, ed., Academic Press, New York, Part III, 1965, p. 93.Google Scholar
  3. 3.
    L.S. Lerman, J.Mol.Biol. 3 18 (1961)CrossRefGoogle Scholar
  4. 4.
    W. Bauer and J. Vinograd, J.Mol.Biol. 47 419 (1970)CrossRefGoogle Scholar
  5. 5.
    D.M. Crothers, Biopolymers 6 575 (1968)CrossRefGoogle Scholar
  6. 6.
    J.B. Le Pecq and C. Paoletti, J.Mol.Biol. 27 87 (1967)CrossRefGoogle Scholar
  7. 7.
    J.D. Watson and F.H.C. Crick, Nature 171 737 (1953)ADSCrossRefGoogle Scholar
  8. 8.
    S. Arnott, in Progress in Biophysics and Molecular Biology, Volume 21, J.A.V. Butler and D. Noble eds., Pergamon Press, New York, 1970, p. 265.Google Scholar
  9. 9.
    D.C. Goodwin and J. Brahms, Nucleic Acids Res. 5 835 (1978)CrossRefGoogle Scholar
  10. 10.
    D. Genest, Ph. Wahl and J.C. Auchet, Biophys.Chem. 1 266 (1974)CrossRefGoogle Scholar
  11. 11.
    Ph. Wahl, D. Genest and J.L. Tichadou, Biophys.Chem. 6 311 (1977)CrossRefGoogle Scholar
  12. 12.
    J. von Neumann, Collected works,Pergamon Press, Oxford, Volume 5, 1963, p.751.Google Scholar
  13. 13.
    J.M. Hammersley and D.C. Handscomb, Les méthodes de Monte-Carlo, Dunod, Paris, 1967.zbMATHGoogle Scholar
  14. 14.
    D. Genest and Ph. Wahl, in Dynamical Aspects of Conformation Changes in Biological Macromolecules, C. Sadron, ed., Reidel, Dordrecht, 1973, p. 367.Google Scholar
  15. 15.
    J.L. Tichadou, D. Genest, Ph. Wahl and G. Aubel-Sadron, Biophys.Chem. 3 142 (1975)CrossRefGoogle Scholar
  16. 16.
    D. Genest and PhT Wahl, Biophys.Chem. 7 317 (1978)CrossRefGoogle Scholar
  17. 17.
    J. Paoletti and J.B. Le Pecq, J.Mol.Biol. 59 43 (1971)CrossRefGoogle Scholar
  18. 18.
    C.A. Parker and W.T. Rees, Analyst 85 587 (1960)ADSCrossRefGoogle Scholar
  19. 19.
    M. Noll, Nature 251 249 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    C. Houssier, B. Hardy and E. Fredericq, Biopolymers 13 1141 (1974)CrossRefGoogle Scholar
  21. 21.
    P.V. Giacomoni and M. Le Bret, FEBS Lett. 29 227 (1973)CrossRefGoogle Scholar
  22. 22.
    M. Le Bret and O. Chalvet, J.Mol.Struct. 37 299 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    I. Zimmerman and H.W. Zimmerman, Ber.Bunsenges.Phys.Chem. 81 81 (1977)CrossRefGoogle Scholar
  24. 24.
    W.J. Pigram, W. Fuller and M.E. Davies, J.Mol.Biol. 80 361 (1973)CrossRefGoogle Scholar
  25. 25.
    D.R. Hewish and L.A. Burgoyne, Biochem.Biophys.Res.Commun. 52 504 (1973)CrossRefGoogle Scholar
  26. 26.
    R.D. Kornberg, Science 184 868 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    A.L. Olins and D.E. Olins, Science 183 330 (1974)ADSCrossRefGoogle Scholar
  28. 28.
    P. Oudet, M. Gross-Bellard and P. Chambon, Cell 4 281 (1975)CrossRefGoogle Scholar
  29. 29.
    E. Van Holde, C.G. Sahasrabuddhe and B.R. Shaw, Nucleic Acids Res. 11 1579 (1974)Google Scholar
  30. 30.
    J.J. Lawrence and M. Daune, Biochemistry 15 3301 (1976)CrossRefGoogle Scholar
  31. 31.
    L.M. Angerer, S. Georghiou and E.N. Moudrianakis, Biochemistry 13 1075 (1974)CrossRefGoogle Scholar
  32. 32.
    P.F. Lurquin and V.L. Seligy, Chem.Biol.Interact. 13 27 (1976)CrossRefGoogle Scholar
  33. 33.
    J. Paoletti, B.B. Magee and P.T. Magee, Biochemistry 16 351 (1976)CrossRefGoogle Scholar
  34. 34.
    M. Erard, G.C. Das, G. de Murcia, A. Mazen, J. Pouyet, M. Champagne and M. Daune, Nucleic Acids Res. 6 3231 (1979)CrossRefGoogle Scholar
  35. 35.
    J.C. Wang, J.Mol.Biol. 89 783 (1974)CrossRefGoogle Scholar
  36. 36.
    L.F. Liu and J.C. Wang, Biochim.Biophys.Acta 395 405 (1975)CrossRefGoogle Scholar
  37. 37.
    D. Genest, G. Sabeur, Ph. Wahl and J.C. Auchet, Biophys.Chem. 13 77 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • D. Genest
  • Ph. Wahl

There are no affiliations available

Personalised recommendations