Fluorescence Anisotropy Decay and Brownian Rotational Motion: Theory and Application in Biological Systems

  • Ph. Wahl
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 69)


Some three decades ago, measurements of the static fluorescence polarization of labelled proteins were introduced by Weber1,2 as a method of determining the protein molecular rotational correlation times. These measurements were expected to provide information on the size, shape and flexibility of the protein molecules. The method was based on Perrin’s theory of the depolarization induced by rotational Brownian motion of rigid molecules in solutions. In the technique originally proposed, the correlation times were determined by measuring the variation of polarization with temperature. It later became obvious that these experiments were not simple to interpret. Clearly the correlation times in a given thermodynamic state of the protein solutions3,4 needed to be measured. Jablonski5 pointed out that the polarized components of the fluorescence were functions of the fluorescence decay and the anisotropy decay, this latter function containing information about the rotational Brownian motion of the chromophores. Consequently, if in addition to the static polarization, one were to measure with a phase fluorometer the average decay times of the two principal components of the fluorescence, one might determine the molecular correlation time in a given solution at a given temperature.5,6 This method, first applied to the study of simple fluorescent dyes, has recently been developed to a high degree of sophistication by Weber and his coworkers, and is dealt with elsewhere in this volume.


Correlation Time Fluorescence Decay BROWNIAN Rotation Fluorescence Anisotropy Excited Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Weber, Biochem.J. 51 145 (1952)Google Scholar
  2. 2.
    G. Weber, in Advances in Protein Chemistry, Volume 8, M.L. Anson, N. Bailey and J.T. Edsall, eds. Academic Press, New York, 1953, pp. 415–459.Google Scholar
  3. 3.
    Yu.Ya. Gottlieb and Ph. Wahl, J.Chim.Phys. 60 844 (1963)Google Scholar
  4. 4.
    Ph. Wahl and G. Weber, J.Mol.Bio1. 30 371 (1967)CrossRefGoogle Scholar
  5. 5.
    A. Jablonski, Z.Naturforsch., 16a 1 (1961)ADSGoogle Scholar
  6. 6.
    R.D. Spencer and G. Weber, J.Chem.Phys. 52 1654 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    W.R. Ware, in Creation and Detection of the Excited State, A.A. Lamola, ed., Marcel Dekker, New York, 1971, pp. 213–302.Google Scholar
  8. 8.
    Ph. Wahl, in New Techniques in Biophysics and Cell Biology, Volume 2, R. Pain and B. Smith, eds., Wiley, New York, 1975, pp. 233–285.Google Scholar
  9. 9.
    J. Yguerabide, in Methods in Enzymology, Volume 26C, C.H.W. Hirs and S.N. Timasheff, eds., Academic Press, New York, 1972, pp. 498–578.Google Scholar
  10. 10.
    R. Rigler and M. Ehrenberg, Quart.Rev.Biophys., 6 139 (1973)CrossRefGoogle Scholar
  11. 11.
    S. Kawato, K. Kinosita Jr. and A. Ikegami, Biochemistry, 16 2319 (1977)CrossRefGoogle Scholar
  12. 12.
    L.A. Chen, R.E. Dale, S. Roth and L. Brand, J.Biol.Chem. 252 2163 (1977)Google Scholar
  13. 13.
    F. Dörr in Creation and Detection of the Excited State, Volume 1A, A.A. Lamola, ed., Marcel Dekker, New York, 1971, pp. 53–122.Google Scholar
  14. 14.
    Ph. Wahl, in Concepts in Biochemical Fluorescence, R.F. Chen and H. Edelhoch, eds., Marcel Dekker, New York, 1975, pp. 1–41.Google Scholar
  15. 15.
    H. Margeneau and G.M. Murphy, The Mathematics of Physics and Chemistry, Van Nostrand, New York, 1964.Google Scholar
  16. 16.
    F. Perrin, Ann.Sci.Ecole Normale Superieure, 45 1 (1928)MathSciNetzbMATHGoogle Scholar
  17. 17.
    A. Einstein, Investigation on the Theory of the Brownian Movement, Dover Publications, New York, 1956.Google Scholar
  18. 18.
    F. Perrin, J.Phys.Rad. 5 33 (1934)CrossRefGoogle Scholar
  19. 19.
    L.D. Fano, Phys.Rev. 119 53 (1960)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    F. Perrin, J.Phys.Rad. 7 1 (1936)CrossRefGoogle Scholar
  21. 21.
    T. Tao, Biopolymers 8 609 (1969)CrossRefGoogle Scholar
  22. 22.
    T.J. Chuang and K.B. Eisenthal, J.Chem.Phys. 57 5094 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    M. Ehrenberg and R. Rigler, Chem.Phys.Lett. 14 539 (1972)ADSCrossRefGoogle Scholar
  24. 24.
    G.G. Belford, R.L. Belford and G. Weber, Proc.Nat.Acad.Sci. U.S.A. 69 1392 (1972)ADSCrossRefGoogle Scholar
  25. 25.
    E.W. Small and I. Isenberg, Biopolymers 16 1907 (1977)CrossRefGoogle Scholar
  26. 26.
    C. Tanford, Physical Chemistry of Macromolecules, Wiley, New York, 1963.Google Scholar
  27. 27.
    I.D. Kuntz Jr. and W. Iiauzmann, Adv.Protein Chem. 28 239 (1974)CrossRefGoogle Scholar
  28. 28.
    I. Munro, I. Pecht and L. Stryer, Proc.Nat.Acad.Sci. U.S.A. 76 56 (1979)ADSCrossRefGoogle Scholar
  29. 29.
    Ph. Wahl, Biochim.Biophys.Acta 175 155 (1969)Google Scholar
  30. 30.
    J.C. Brochon and Ph. Wahl, Eur.J.Biochem. 25 20 (1972)CrossRefGoogle Scholar
  31. 31.
    K. Tawada, Ph. Wahl and J.C. Auchet, Eur.J.Biochem. 88 411 (1978)CrossRefGoogle Scholar
  32. 32.
    Ph. Wahl, K. Tawada and J.C. Auchet, Eur.J.Biochem. 88 421 (1978)CrossRefGoogle Scholar
  33. 33.
    T. Ikkai, Ph. Wahl and J.C. Auchet, Eur.J.Biochem. 93 397 (1979)CrossRefGoogle Scholar
  34. 34.
    J.A. McCammon and M. Karplus, Nature 268 766 (1977)ADSCrossRefGoogle Scholar
  35. 35.
    J. Yguerabide, H.F. Epstein and L. Stryer, J.Mo1.Biol. 51 573 (1970)CrossRefGoogle Scholar
  36. 36.
    R.A. Mendelson, M.F. Morales and J. Botts, Biochemistry 12 2250 (1973)CrossRefGoogle Scholar
  37. 37.
    M. Miki, Ph. Wahl and J.C. Auchet, unpublished results.Google Scholar
  38. 38.
    Ph. Wahl, Chem.Phys. 7 210 (1975)ADSCrossRefGoogle Scholar
  39. 39.
    Ph. Wahl, J. Paoletti and J.B. Le Pecq, Proc.Natl.Acad.Sci. U.S.A. 65 417 (1970)ADSCrossRefGoogle Scholar
  40. 40.
    D. Genest and Ph. Wahl, Biophys.Chem. 7 317 (1978)CrossRefGoogle Scholar
  41. 41.
    M. Le Bret, Biopolymers . l7 1939 (1978)Google Scholar
  42. 42.
    M. Barkley and B. Zimm, J.Chem.Phys. 70 2991 (1979)ADSCrossRefGoogle Scholar
  43. 43.
    S. Allison and J.M. Schurr, Chem.Phys. 41 35 (1979)CrossRefGoogle Scholar
  44. 44.
    K. Kinosita Jr., S. Kawato and A. Ikegami, Biophys.J. 20 289 (1977)CrossRefGoogle Scholar
  45. 45.
    W.A. Wegener, V.J. Koester and R.M. Dowben, J.Chem.Phys. 73 4086 (1980)ADSCrossRefGoogle Scholar
  46. 46.
    S.C. Harvey and H.C. Cheung, Biopolymers 19 913 (1980)CrossRefGoogle Scholar
  47. 47.
    J.C. Brochon, Ph. Wahl and J.C. Auchet, Eur.J.Biochem. 41 577 (1974)CrossRefGoogle Scholar
  48. 48.
    Ph. Wahl and S.N. Timasheff, Biochemistry 8 2945 (1969)CrossRefGoogle Scholar
  49. 49.
    J.C. Brochon, Ph. Wahl, M.O. Monneux-Doublet and A. Olomucki, Biochemistry 16 4594 (1977)CrossRefGoogle Scholar
  50. 50.
    Ph. Wahl, C.R.Acad.Sci. 263 1525 (1966)Google Scholar
  51. 51.
    L. Stryer, Science 162 526 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Ph. Wahl

There are no affiliations available

Personalised recommendations