Long-Range Nonradiative Transfer of Electronic Excitation Energy

  • I. Z. Steinberg
  • E. Haas
  • E. Katchalski-Katzir
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 69)


A molecule in an electronically excited state can transfer its excitation energy to another molecule in a variety of ways. Under appropriate conditions the energy donor and acceptor do not have to come in direct contact with one another for the energy transfer to occur, and the migration of energy may take place over distances even in excess of 50Å1. The energy transfer is readily demonstrated when the donor and acceptor molecules are not of the same kind and have different absorption and emission spectra; one can then selectively excite the donor and observe the enhanced emission of the acceptor due to light absorption by the donor. Energy can, however, migrate also among molecules of the same kind, which is manifested by a depolarization of the emitted light when the transition moments of the participating molecules are not aligned parallel to one another. Long-range nonradiative energy transfer has also been demonstrated in some photochemical reactions, in which the species which has undergone the reaction was not the one which absorbed the light. A classical example is the finding that light absorbed by the aromatic amino acids of a heme protein complexed to carbon monoxide was 100% effective in splitting off the ligand from the heme2–4. Since it was obvious that it is not possible for all the aromatic amino acids to be in contact with the heme group, long-range transfer was indicated.


Energy Transfer Fluorescence Decay Transition Dipole Moment Acceptor Molecule Excitation Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Th. Förster, Fluoreszenz Organischer Verbindungen, Vandenhoeck & Ruprecht, Göttingen, 1951.Google Scholar
  2. 2.
    Warburg and E. Negelein, Biochem.Z. 193 339 (1928)Google Scholar
  3. 3.
    Warburg and E. Negelein, Biochem.Z. 214 64 (1929)Google Scholar
  4. 4.
    T. Bücher and J. Kaspers, Biochim.Biophys.Acta 1 21 (1947)CrossRefGoogle Scholar
  5. 5.
    Th. Förster, Disc.Faraday Soc. 27 7 (1959)CrossRefGoogle Scholar
  6. 6.
    J. Perrin, C. R. Acad. Sci. (Paris) 184 1097 (1927)Google Scholar
  7. 7.
    G. Hoch and R. S. Knox, in Photophysiology,A.C. Giese, ed., Vol. 3, Academic Press, New York, 1968, p. 225.Google Scholar
  8. 8.
    F. Perrin, Ann.Phys.(Paris) 17 283 (1932)Google Scholar
  9. 9.
    Th. Förster, Naturwiss.33 166 (1946)Google Scholar
  10. 10.
    D. L. Dexter, J.Chem.Phys. 21 836 (1953)ADSCrossRefGoogle Scholar
  11. 11.
    G. W. Robinson and R.P. Frosch, J.Chem.Phys. 37 1962 (1962)ADSCrossRefGoogle Scholar
  12. 12.
    G. W. Robinson and R.P. Frosch, J.Chem.Phys. 38 1187 (1963)ADSCrossRefGoogle Scholar
  13. 13.
    Th. Förster, in Modern Quantum Chemistry, O. Sinanoglu, ed., Part III, Academic Press, New York, 1966, p. 93.Google Scholar
  14. 14.
    J. C. Slater and N.H. Frank, Electromagnetism, McGraw-Hill, New York, 1947.zbMATHGoogle Scholar
  15. 15.
    V. L. Ermolaev and E.B. Sveshnikova, Sov.Phys.Dokl. 8 373 (1963)ADSGoogle Scholar
  16. 16.
    R. G. Bennett, R.P. Schwenker and R.E. Kellogg, J.Chem.Phys. 41 3040 (1964)ADSCrossRefGoogle Scholar
  17. 17.
    V. L. Ermolaev, Opt.Spectrosc. 6 417 (1959)ADSGoogle Scholar
  18. 18.
    L. Stryer and R.P. Haugland, Proc.Natl.Acad.Sci.USA 58 719 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    I. Z. Steinberg, W.F. Harrington, A. Berger, M. Sela and E. Katchalski, J.Amer.Chem.Soc. 82 5263 (1960)CrossRefGoogle Scholar
  20. 20.
    H. Bücher, K. H. Drexhage, M. Fleck, H. Kuhn, O. Möbius, F.P. Schäfer, J. Sondermann, W. Sperling, P. Tillmann and J. Wiegand, Mol.Cryst. 2 199 (1967)CrossRefGoogle Scholar
  21. 21.
    R. P. Haugland, J. Yguerabide and L. Stryer, Proc.Natl.Acad.Sci. USA 63 23 (1969)ADSCrossRefGoogle Scholar
  22. 22.
    M. Z. Maksimov and I. M. Rozman, Opt. Spectrosc. 12 337 (1962)ADSGoogle Scholar
  23. 23.
    I. Z. Steinberg, J.Chem.Phys. 48 2411 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    R. E. Dale, Acta Phys. Polon. A54 743 (1978)Google Scholar
  25. 25.
    Y. Elkana, J. Feitelson and E. Katchalski, J.Chem.Phys. 48 2399 (1968)ADSCrossRefGoogle Scholar
  26. 26.
    I. Z. Steinberg and E. Katchalski, J.Chem.Phys. 48 2404 (1968)ADSCrossRefGoogle Scholar
  27. 27.
    M. Smoluchowski, Z.Phys.Chem.(Leipzig), 92 129 (1918)Google Scholar
  28. 28.
    Th. Förster, Z. Naturforsch. 4a 321 (1949)ADSGoogle Scholar
  29. 29.
    R. E. Dale and J. Eisinger, Biopolymers 13 1573 (1974)CrossRefGoogle Scholar
  30. 30.
    R. E. Dale and J. Eisinger, in Biochemical Fluorescence R. F. Chen and H. Edelhoch, eds., Vol. 1, Marcel Dekker, New York, 1975, p. 115.Google Scholar
  31. 31.
    R. E. Dale, J. Eisinger and W. E. Blumberg, Biophys. J. 26 161 (1979); 30 365 (1980)Google Scholar
  32. 32.
    E. Haas, E. Katchalski-Katzir and I. Z. Steinberg, Biochemistry 17 5064 (1978)CrossRefGoogle Scholar
  33. 33.
    A. C. Albrecht, J. Chem.Phys. 33 156 (1960)ADSCrossRefGoogle Scholar
  34. 34.
    A. Jablonski, Z.Phys. 96 236 (1935)ADSCrossRefGoogle Scholar
  35. 35.
    I. Z. Steinberg, Ann.Rev.Biochem. 40 83 (1971)CrossRefGoogle Scholar
  36. 36.
    L. Stryer, Ann.Rev.Biochem. 47 819 (1978)CrossRefGoogle Scholar
  37. 37.
    E. Haas, M. Wilchek, E. Katchalski-Katzir and I.Z. Steinberg Proc.Natl.Acad.Sci. USA 72 1807 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    E. Haas, E. Katchalski-Katzir and I.Z. Steinberg, Biopolymers 17 11 (1978)CrossRefGoogle Scholar
  39. 39.
    A. Grinvald, E. Haas and I.Z. Steinberg, Proc.Natl.Acad.Sci. USA 69 2273 (1972)ADSCrossRefGoogle Scholar
  40. 40.
    C. R. Cantor and P. Pechukas, Proc.Natl.Acad.Sci. USA 68 2099 (1971)ADSCrossRefGoogle Scholar
  41. 41.
    D.F. Shano, Share Program Library, SDA, 3492 (1967)Google Scholar
  42. 42.
    D. W. Marquardt, Share Program Library, SDA, 3094 (1966)Google Scholar
  43. 43.
    A. Grinvald and I.Z. Steinberg, Analyt.Biochem. 59 583 (1974)CrossRefGoogle Scholar
  44. 44.
    G. Hazan, Ph.D. Dissertation, The Feinberg Graduate School of the Weizmann Institute of Science, Rehovot, 1973Google Scholar
  45. 45.
    P. J. Flory, Proc.Natl.Acad.Sci.USA 70 1819 (1973)ADSCrossRefGoogle Scholar
  46. 46.
    P. J. Flory, Statistical Mechanics of Chain Molecules, John Wiley, New York, 1969, pp. 9, 34Google Scholar
  47. 47.
    C. F. Edwards, Proc.Phys.Soc. (London) 85 613 (1965)ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    M. A. Kumbar, J.Macromol.Sci.Chem. A7 461 (1973)CrossRefGoogle Scholar
  49. 49.
    H. Reiss, J.Chem.Phys. 47 186 (1967)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • I. Z. Steinberg
  • E. Haas
  • E. Katchalski-Katzir

There are no affiliations available

Personalised recommendations