Fluorescence Decay Analysis by the Method of Moments

  • E. W. Small
  • I. Isenberg
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 69)


Experimental data contain two types of noise: random statistical fluctuations and non-random distortions. The latter arise because instruments are not ideal; consequently, all data contain errors even if random noise is made negligible by some sort of smoothing process. Although many modern optical instruments can now smooth data either by repetitive scanning or photon counting over long periods of time, the relevant physical parameters obtained from an analysis will still be in error because of instrumental distortions. However, the values of these parameters will be reproducible or may only change slowly as experiments are repeated.


Fluorescence Decay Impulse Response Function Decay Parameter Lamp Flash Shift Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Isenberg and R. D. Dyson, The analysis of fluorescence decay by a method of moments, Biophys.J. 9 1337 (1969)CrossRefGoogle Scholar
  2. 2.
    I. Isenberg, On the theory of fluorescence decay experiments. I. Nonrandom distortions, J.Chem.Phys. 59 2696 (1973)Google Scholar
  3. 3.
    I. Isenberg, On the theory of fluorescence decay experiments. II. Statistics, J.Chem.Phys. 59 5708 (1973)Google Scholar
  4. 4.
    I. Isenberg, R. D. Dyson and R. Hanson, Studies on the analysis of fluorescence decay data by the method of moments, Biophys. J. 13 1090 (1973)Google Scholar
  5. 5.
    J. Eisenfeld and C. C. Ford, A systems-theory approach to the analysis of multiexponential fluorescence decay, Biophys.J. 26 73 (1979)CrossRefGoogle Scholar
  6. 6.
    J. Eisenfeld and S. W. Cheng, General moment methods for a class of nonlinear models, Appt. Math. Comp., 6 335 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J. N. Demas and G. A. Crosby, Photoluminescence decay curves: An analysis of the effects of flash duration and linear instrumental distortions, AnaZyt.Chem. 42 1010 (1970)CrossRefGoogle Scholar
  8. 8.
    A. Gafni, R.L. Modlin and L. Brand, Analysis of fluorescence decay curves by means of the Laplace transformation, Biophys.J. 15 263 (1975)Google Scholar
  9. 9.
    A. Grinvald, The use of standards in the analysis of fluorescence decay data, Analyt. Biochem. 75 260 (1976)Google Scholar
  10. 10.
    A. Grinvald and I. Z. Steinberg, On the analysis of fluorescence decay kinetics by the method of least-squares, Analyt. Biochem. 59 583 (1974)CrossRefGoogle Scholar
  11. 11.
    W.P. Heiman, Analysis of very fast transient luminescence behaviour, Int.J.Radiation Phys.Chem. 3 283 (1971)Google Scholar
  12. 12.
    B. R. Hunt, Biased estimation for nonparametric identification of linear systems, Math. Biosci. 10 215 (1971)Google Scholar
  13. 13.
    R. E. Jones, Nanosecond fluorometry, Ph.D. thesis, University of Stanford, Univ. Microfilms, Ann Arbor, Michigan (1976)Google Scholar
  14. 14.
    A. E. McKinnon, A. G. Szabo and D. R. Miller, The deconvolution of photoluminescence data, J.Phys.Chem. 81 1564 (1977)CrossRefGoogle Scholar
  15. 15.
    B. Valeur, Analysis of time dependent fluorescence experiments by method of modulating functions with special attention to pulse fZuorometry, Chem.Phys. 30 85 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    B. Valeur and J. Moirez, Analysis of multiexponential decay curves by the method of modulating functions: Application to fluorescence, J. Chim. Phys. Physicochim. Biol. 70 500 (1973)Google Scholar
  17. 17.
    W. R. Ware, L. J. Doemeny and T. L. Nemzek, Deconvolution of fluorescence and phosphorescence decay curves. A least-squares method, J.Phys.Chem. 77 2038 (1973)CrossRefGoogle Scholar
  18. 18.
    J. C. Andre, L. M. Vincent, D. O’Connor and W. R. Ware, Application of fast Fourier transform to deconvolution in single photon counting, J. Phys. Chem. 83 2285 (1979)CrossRefGoogle Scholar
  19. 19.
    E. W. Small and I. Isenberg, The use of moment index displacement in analyzing fluorescence time-decay data, Biopolymers 15 1093 (1976)CrossRefGoogle Scholar
  20. 20.
    T. N. Solle, E. W. Small and I. Isenberg, Analysis of non-exponential fluorescence decay data by a method of moments, Biophys.J., 29 367 (1980)CrossRefGoogle Scholar
  21. 21.
    E. W. Small and I. Isenberg,On moment index displacement J.Chem.Phys. 66 3347 (1977)Google Scholar
  22. 22.
    E. W. Small, T. N. Solie and I. Isenberg A moment consistency check for use with the method of moments in analyzing fluorescence decay dataunpublished results.Google Scholar
  23. 23.
    J. Eisenfeld, S. R. Bernfeld and S. W. Cheng, System identification problems and the method of moments, Math. Biosci. 36 199 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    J. Eisenfeld and B. Soni,Linear algebraic computational procedures for system identification problemsin Proceedings of the First International Conference on Mathematical Modeling Vol. 1X. J. R. Avula, Ed., University of Missouri Press, Columbia, 1977.Google Scholar
  25. 25.
    J. Eisenfeld, On identifiability of impulse-response in compartmental systems, Math. Biosci. 47 15 (1979)Google Scholar
  26. 26.
    S. W. Cheng and J. Eisenfeld, A direct computational method for estimating the parameters of a nonlinear model, in Applied Nonlinear Analysis, V. Lakshmikantham, Ed., Academic Press, New York, pp. 485–497, 1979.Google Scholar
  27. 27.
    T. L. Nemzek and W. R. Ware, Kinetics of diffusion-controlled reactions: Transient effects in fluorescence quenching, J. Chem. Phys. 62 477 (1975)ADSGoogle Scholar
  28. 28.
    W. R. Ware and J. S. Novros, Kinetics of diffusion-controlled reactions. An experimental test of the theory as applied to fluorescence quenching, J.Phys.Chem. 70 3246 (1966)Google Scholar
  29. 29.
    R. G. Bennett, Radiationless intermolecular energy transfer. I. Singlet-singlet transfer, J.Chem.Phys. 41 3037 (1964)Google Scholar
  30. 30.
    R. H. Fairclough and C. R. Cantor,The use of singlet-singlet energy transfer to study macromolecular assemblies in Methods of EnzymologyVol. XLVIII, C. H. W. Hirs and S. N. Timasheff, Eds., Academic Press, New York, 1978, p.347.Google Scholar
  31. 31.
    Th. F$rster, Delocalized excitation and excitation transfer, in Modern Quantum Chemistry, Part III, O. Sinanoglu, Ed.. Academic Press, New York, 1965, p. 93.Google Scholar
  32. 32.
    L. Stryer, Fluorescence energy transfer as a spectroscopic ruler, Ann. Rev. Biochem. 47 819 (1978)Google Scholar
  33. 33.
    Ph. Wahl, J.C. Auchet and B. Donzel, The wavelength dependence of the response of a pulse fluorometer using the single photoelectron counting method, Rev. Sci. Instrum. 45 28 (1974)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • E. W. Small
  • I. Isenberg

There are no affiliations available

Personalised recommendations