Advertisement

Old and New Developments in Fluorescence Spectroscopy

  • G. Weber
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 69)

Abstract

Recent years have seen remarkable advances in the measurement of the properties of fluorescent solutions and of the more complex fluorescent biological systems. These advances have followed progress in optics and electronics including the introduction of instrumentation with digital output that allows a much better evaluation of results, and it is easy to forget how long ago the theoretical bases of the subject were laid down. In fact the fundamental observations on all the aspects of fluorescence capable of yielding information on molecular properties had already been made by 1930. Recent advances have extended our ability to study these properties to virtually every system, while the original observations referred to exceptionally favourable materials and circumstances. I shall briefly refer to what I consider to be the four most important discoveries in this area.

Keywords

Impulse Response Propylene Glycol Rotational Rate Fluorescence Lifetime Transition Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wawilow, S.J., Z.Phys. 42 311 (1927)ADSCrossRefGoogle Scholar
  2. 2.
    Gaviola, E., Z.Phys. 42 853 (1927)ADSCrossRefGoogle Scholar
  3. 3.
    Perrin, F., J.Phys.Rad. 1 390 (1926)CrossRefGoogle Scholar
  4. 4.
    Cario, G. & Franck, J., Z.Phys. 11 161 (1922)ADSCrossRefGoogle Scholar
  5. 5.
    Gaviola, E. & Pringsheim, P., Z.Phys. 43 384 (1927)Google Scholar
  6. 6.
    For further considerations on this problem see: Munro, I.H., Pecht, I. & Stryer, L., Proc.Nat.Acad.Sci.USA 76 56 (1979); Lakowicz, J.R. & Weber, G., Biophys.J. 32 591 (1980)Google Scholar
  7. 7.
    Weber, G., Nature 190 27–29 (1961)ADSCrossRefGoogle Scholar
  8. 8.
    Warner, I.M., Christian, G.D., Davidson, E.R. & Callis, J.B., Analyt.Chem. 49 564–573, 2155–2159 (1977)Google Scholar
  9. 9.
    Macgregor, R.B. & Weber, G., Proc.8th Katzir Memorial Conference, New York, 1980, Ann.N.Y.Acad.Sci. 366 140–154 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    Lippert, E., Z.Elektrochem. 61 962–975 (1957) Kawski, A. & Czajko, J., Z.Naturforsch. 29 84–94 (1974)Google Scholar
  11. 11.
    Weber, G. & Shinitzky, M., Proc.Nat.Acad.Sci.USA 65 878 (1970) Galley, W.C. & Purkey, R.M., Proc.Nat.Acad.Sci.USA 67 1116 (1970)Google Scholar
  12. 11.
    Galley, W.C. & Purkey, R.M., Proc.Nat.Acad.Sci.USA 67 1116 (1970)Google Scholar
  13. Itoh, K. & Azumi, T., J.Chem.Phys. 62 3431 (1975)ADSCrossRefGoogle Scholar
  14. Valeur, B. & Weber, G., J.Chem.Phys. 69 2393–2400 (1978)ADSCrossRefGoogle Scholar
  15. 12.
    Haar, H.P. & Hauser, M., Rev.Sci.Instrum. 49 632 (1978) Hauser, M. & Heidt, G., Rev.Sci.Instrum. 46 469–471 (1978)Google Scholar
  16. 13.
    Brillouin, L., Science & Information Theory, Academic Press, New York, 1962, Chapter 8.zbMATHGoogle Scholar
  17. 14.
    Solodovnikov, V.V., Introduction to the Statistical Dynamics of Automatic Control Systems, Dover, New York, 1960, Chapter 1.Google Scholar
  18. 15.
    Weber, G., J.Phys.Chem. 85 949–953 (1981)CrossRefGoogle Scholar
  19. 16.
    Hildebr&, F.B., Introduction to Numerical Analysis, McGraw-Hill, New York, 1974, p. 458.Google Scholar
  20. 17.
    Jameson, D.M. & Weber, G., J.Phys.Chem. 85 953–958 (1981)CrossRefGoogle Scholar
  21. 18.
    Weber, G., Biochem.J. 51 145–155, 155–167 (1952)Google Scholar
  22. 19.
    Frey, M. & Wahl, Ph., C.R.Acad.Sci.Paris 262 2653–2656 (1966)Google Scholar
  23. 20.
    Spencer, R.D. & Weber, G., J.Chem.Phys. 52 1654–1663 (1970)ADSCrossRefGoogle Scholar
  24. 21.
    Jablonski, A., Z.Phys. 95 53 (1935); Z.Naturforsch. 16a 1 (1961)ADSGoogle Scholar
  25. 22.
    Zinsli, P.E., Chem.Phys. 20 299–302 (1977)ADSCrossRefGoogle Scholar
  26. 23.
    Mantulin, W.W. & Weber, G., J.Chem.Phys. 66 4091–4097 (1977)ADSCrossRefGoogle Scholar
  27. 24.
    Weber, G., J.Chem.Phys. 66 4081–4091 (1977)ADSCrossRefGoogle Scholar
  28. 25.
    Valeur, B. & Weber, G., J.Chem.Phys. 69 2393–2400 (1978)ADSCrossRefGoogle Scholar
  29. 26.
    Hu, C.-M. & Zwanzig, R., J.Chem.Phys. 60 4354–4357 (1974)ADSCrossRefGoogle Scholar
  30. 27.
    Williams, J.F., Doctoral Dissertation, University of Illinois 1978.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • G. Weber

There are no affiliations available

Personalised recommendations