Enzymes in Non-Aqueous Systems

  • Marcel Waks
Part of the Progress in Mathematics book series (NSSA)

Abstract

Enzymes active in non-aqueous systems have been also designated as “dry enzymes”1. The notion does not imply the absence of any water at all in the reaction medium, however, since enzymatic activity requires at least 0.2 g of water per gram of protein. This amount of water, determined in sequential rehydrat,on experiments on solid vitrified samples of lysozyme by Careri et al2, is tightly bound to the surface of the protein and can be considered to be a different solvent from bulk water. Indeed its physicochemical properties are comparable to “biological water”3 also present at membrane interfaces and which plays a key role in the control of many important biological processes.

Keywords

Reverse Micelle Micellar Solution Rotational Diffusion Polar Head Group Rotational Correlation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Levinthal, Dry enzymes. Proteins: Struct. Funct. Genetics. 1: 2–3, (1986).CrossRefGoogle Scholar
  2. 2.
    G. Careri, E. Gratton, P. H. Yang, and J. A. Rupley, Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature., 284: 572–573, (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Cooke, and I. D. Kuntz, The properties of water in biological systems. Annu.Rev.Biophys.Bioeng., 3: 95–126, (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    J. L. Finney, and P. L. Poole, Protein hydration and enzyme activity: the role of hydration-induced conformation and dynamic changes in the activity of lysozyme. Comments Mol.Cell.Biophys., 2: 129–151, (1984).Google Scholar
  5. 5.
    S. J. Singer, The properties of proteins in nonaqueous solvents. in “Advances in protein chemistry.” Jr. C. B. Anfinsen, M. L. Anson, K. Bailey, and J.T.Edsall, eds., New York: Academic Press. 17: 1–68, (1962).Google Scholar
  6. 6.
    T. Yoshimoto, A. Ritani, K. Ohwada, K. Takahashi, Y.Kodera, A. Matsushima, Y. Saito, and Y. Inada, Polyethylene glycol derivative-modified cholesterol oxidase soluble and active in benzene. Biochem.Biophy.Res.Comm., 148: 876–882, (1987).Google Scholar
  7. 7.
    H. F. Gaertner, and A. J. Puigserver, Peptide synthesis catalyzed by polyethylene glycol-modified chymotrypsin in organic solvents. Proteins: Struct. Funct. Genetics, 3: 130–137, (1988).CrossRefGoogle Scholar
  8. 8.
    L. Y. Lee, and J. Lee, Thermal stability of proteins in the presence of polyethylene glycols. Biochemistry., 26: 7813–7819, (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Zaks, and A. M. Klibanov, Enzyme-catalysed processes in organic solvents. Proc.Natl.Acad.Sc. USA., 82: 3192–3196, (1985).CrossRefGoogle Scholar
  10. 10.
    K. Martinek, A. V. Levashov, N. Klyachko, Y. L. Khmelnitski, I. V. Berezin, Micellar enzymology., Eur.J.Biochem., 155: 453–468, (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    P. L. Luisi, L. Magid, Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. Crit.Rev.Biochem., 20: 409474, (1986).Google Scholar
  12. 12.
    P. L. Luisi, M. Giomini, M. P. Pileni, and B. H. Robinson, Reverse micelles as hosts for proteins and small molecules., Biochim. Biophys. Acta., 947: 209–246, (1988).CrossRefGoogle Scholar
  13. 13.
    A. Delahodde, M. Vacher, C. Nicot, and M. Waks, Solubilization and insertion into reverse micelles of the major myelin trans-membrane proteolipid. FEBS Lett., 172: 343–347, (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    A. L. Margolin, and A. M. Klibanov, Peptide synthesis catalyzed by lipases in anhydrous organic solvents. J. Am. Chem. Soc., 109: 3802–3804, (1987).CrossRefGoogle Scholar
  15. 15.
    C. Laane, S. Boeren, K. Vos, C. Veeger, Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng., 30: 81–87, (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Zaks, and A. M. Klibanov, Enzymatic catalysis in nonaqueous solvents. J.Biol.Chem., 263: 3194–3201, (1988).PubMedGoogle Scholar
  17. 17.
    C. Laane, and C. Veeger, On the design of reversed micellar media for the enzymatic synthesis of apolar compounds. in “ Methods in Enzymology” Immobilized Enzymes and Cells. K. Mosbach, ed., 136: 216–229, (1987).Google Scholar
  18. 18.
    M. Reslov, P. Adlercreutz, B. Mattiasson, Organic solvents for bioorganic synthesis. Optimization of parameters for a chymotrypsin catalysed process. Appl.Microbiol.Biotechnol., 26: 1–8, (1987).CrossRefGoogle Scholar
  19. 19.
    P. Lüthi, and P. L. Luisi, Enzymatic synthesis of hydrocarbon- soluble peptides with reverse micelles. J. Am. Chem. Soc.,, 106: 7285–7286. (1984).CrossRefGoogle Scholar
  20. 20.
    A. Zaks, and A. M. Klibanov, Substrate specificity of enzymes in organic solvents vs. Water is reversed. J.Am.Chem.Soc., 108: 2767–2768, (1986).CrossRefGoogle Scholar
  21. 21.
    K. Martinek, Yu. L. Khmel’nitskii, A. V. Levashov, and I.V. Berezin Substrate specificity of alcohol dehydrogenase in a colloidal solution of water in an organic solvent. Do’kl. Akad. Nauk SSSR, 263: 737–741, (1982).Google Scholar
  22. 22.
    K. Martinek, Yu. L. Khmel’nitskii, A. V. Levashov, N. L. Klyachko, A. N. Semenov, and I. V. Berezin, Biocatalysis and regulation of chemical equilibrium in a system of inverted micelles of a surfactant in an organic solvent. Dokl.Akad.Nauk SSSR, 256: 1423–1426, (1981).Google Scholar
  23. 23.
    A. Zaks, and A. M. Klibanov, Enzymatic catalysis in organic media at 100°C. Science., 224: 1249–1251, (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    C. J. Wheeler, and R. Croteau, Terpene cyclase catalysis in organic solvent/minimal water media: demonstration and optimization of (+) a-Pinene cyclase activity. Arch.Biochem.Biophys., 248: 429434, (1986).Google Scholar
  25. 25.
    P. Douzou, E. Keh, and C. Balny, Cryoenzymology in aqueous media: micellar solubilized water clusters. Proc.Natl.Acad.Sci. USA. 76: 681–684, (1979).CrossRefGoogle Scholar
  26. 26.
    F. M. Wasacz, J. M. Olinger, R. J. Jakobsen, Fourrier transform infrared studies of proteins using nonaqueous solvents. Effect of methanol and ethylene glycol on albumin and immunoglobulin G. Biochemistry, 26: 1464–1470, (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    J. A. Rupley, E. Gratton,and G. Careri, Water and globular proteins Trends in Biochem. Sci., 8: 12–22, (1983).Google Scholar
  28. 28.
    B. Prescott, V. Renugopalakrishnan, M. J. Glimcher, A. Bhushan, and G. J. Thomas, Jr., A Raman spectroscopy study of hen egg yolk phosvitin: structures in solution and in the solid state. Biochemistry, 25: 2792–2798, (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    T. J. Ahern and A. M. Klibanov, The mechanism of irreversible enzyme inactivation at 100°C. Science, 228: 1280–1284, (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    C. Nicot, M. Vacher, M. Vincent, J. Gallay, and M. Waks, Membrane proteins in reverse micelles: myelin basic protein in membrane-mimetic environment. Biochemistry, 24: 7024–7032, (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Gallay, M. Vincent, C. Nicot, and M. Waks, Conformational aspects and rotational dynamics of synthetic adrenocorticotropin–(1–24) and glucagon in reverse micelles. Biochemistry, 26: 5738–5747, (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    B. Steinmann, H. Jackie, and P. L. Luisi, A comparative study of lyysozyme conformation in various reverse micellar systems. Biopolymers, 25: 1133–1156, (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Seno, H. Moritomi, Y. Kuroyanagi, K.Iwamoto, and G. Ebert, Conformational studies of basic poly(aamino acid)s in reversed micelles. Colloid Polymer Sci., 262: 727–733, (1984).CrossRefGoogle Scholar
  34. 34.
    M. Waks, and S. Beychok, Induced conformational states in human apohemoglobin on binding of haptoglobin 1–1. Effect of added heme as a probe of frozen structures. Biochemistry, 13: 15–22, (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    J. H. Fendler, Enzymes and membrane mimetic systems. In “Membrane Mimetic Chemistry” J. Wiley and Sons eds, New York. 235–292, (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Marcel Waks
    • 1
  1. 1.Unité Associée 586 du CNRSUniversité René DescartesParis Cedex 06France

Personalised recommendations