The Concept of the Potential of Mean-Force in Enzyme Catalysis

  • Teresa Fonseca
Part of the Progress in Mathematics book series (NSSA)


When trying to understand the microscopic details of any chemical reactive process in a condensed phase it is always very useful to introduce the concept of a potential of mean-force. As we shall see below from a number of examples, this concept will tell us how the reaction coordinate (we assume here for simplicity a one-dimension reaction coordinate)is affected on the average by its environment. This concept is particularly useful when applied to enzyme catalysis as it can make more transparent and explain, at least in part, how enzymes are so successful in speeding up specific chemical reaction processes.


Partition Function Energy Profile Reaction Coordinate Enzyme Catalysis Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. Reber, J.M. Harris and P.v.R. Schleyer in “ Ions and Ion Pairs in Organic Reactions ”, ed. M. Szwarc, Wiley, New York (1974),vol. 2 p. 247.Google Scholar
  2. 2.
    W.L. Jorgensen, J.K. Buckner, S.E. Huston and P.J. Rossky, J. Amer. Chem. Soc. 109: 1891 (1987).CrossRefGoogle Scholar
  3. 3.
    G. Ciccotti, M. Ferrario, J.T. Hynes and R. Kapral, Chem. Phys., in press.Google Scholar
  4. 4.
    A.J. Parker, Chem. Rev. 69: 1 (1969).CrossRefGoogle Scholar
  5. 5.
    W.N. Olmstead and J.I. Brauman, J. Amer. Chem. Soc. 99: 4219 (1977).CrossRefGoogle Scholar
  6. 6.
    J. Chandrasekhar, S.F. Smith and W.L. Jorgensen, J. Amer. Chem. Soc. 107: 154 (1985).CrossRefGoogle Scholar
  7. 7.
    J. Chandrasekhar and W.L. Jorgensen, J. Amer. Chem. Soc. 107: 2974 (1985).CrossRefGoogle Scholar
  8. 8.
    S. Glasstone, K.J. Laidler and H. Eyring, “The Theory of Rate Processes”, McGraw-Hill, New York (1941).Google Scholar
  9. 9.
    J. Kraut, Science, to be published.Google Scholar
  10. 10.
    G.E. Lienhard, Science 180: 149 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    J.A. McCammon and S.C. Harvey, “ Dynamics of Proteins and Nucleic Acids”, Cambridge, London (1987), and references therein.Google Scholar
  12. 12.
    C.F. Wong and J.A. McCammon, J. Amer. Chem. Soc. 108: 3830 (1986).CrossRefGoogle Scholar
  13. 13.
    J.R. Knowles and W.J. Albery, Acc. Chem. Res. 10: 105 (1977).CrossRefGoogle Scholar
  14. 14.
    G. Alagona, P. Desmeules, C. Ghio and P.A. Kollman, J. Amer. Chem. Soc. 106: 3623 (1984).CrossRefGoogle Scholar
  15. 15.
    G. Alagona, C.Ghio and P.A. Kollman, J. Mol. Biol. 191: 23 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Borgis and J.T. Hynes, to be published in this volume.Google Scholar
  17. 17.
    S.J. Weiner, G.L. Seibel and P.A. Kollman, Proc. Nat. Acad. Sci. USA 83: 649 (1986).CrossRefGoogle Scholar
  18. 18.
    S.J. Weiner, U.C. Singh and P.A. Kollman, J. Amer. Chem. Soc. 107: 2219 (1985).CrossRefGoogle Scholar
  19. 19.
    G. Alagona, E. Scrocco and J. Tomasi, J. Amer. Chem. Soc. 97: 9876 (1975).CrossRefGoogle Scholar
  20. 20.
    A. Warshell, Acc. Chem. Res. 14: 284 (1981); ibid. Proc. Natl. Acad. Sci. USA 81: 444 (1984).CrossRefGoogle Scholar
  21. 21.
    M.J.S. Dewar, Enzyme 36: 8 (1986).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Teresa Fonseca
    • 1
  1. 1.Chemistry DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations