Skip to main content

Microscopic Simulations of Chemical Reactions in Solutions and Protein Active Sites; Principles and Examples

  • Chapter
The Enzyme Catalysis Process

Part of the book series: Progress in Mathematics ((NSSA))

  • 172 Accesses

Abstract

The reason for the enormous catalytic power of enzymes is one of the most fundamental questions in molecular biophysics. Disregarding magical effects it is clear that enzyme catalysis must be based on some clear and probably simple physical concepts. This paper will examine the microscopic origin of enzyme catalysis by computer simulation approaches. Methods for simulation of chemical reactions in solutions and proteins will be reviewed, emphasizing the insight obtained from the simple Empirical Valence Bond (EVB) formulation. The reader will be introduced to simple approaches that should let him judge for himself which catalytic effects are important and how to formulate a mechanistic hypothesis in terms of well defined energy values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warshel, A. and Weiss, R.M. (1980). J. Am. Chem. Soc., 102, 6218–6226.

    Google Scholar 

  2. Coulson, C.A., and Danielsson, U. (1954). Part II. Ark. Fys., 8, 245–255.

    Google Scholar 

  3. Born, M. (1920) Phys. I, 45–48.

    Google Scholar 

  4. Kirkwood, J.G. (1934). J. Chem. Phys., 2, 351–361.

    Google Scholar 

  5. Warshel, A. and Russell, S. (1984) Quart. Rev. of Biophys. 17 283–427.

    Article  CAS  Google Scholar 

  6. Russell, S. and Warshel, A. (1985) J. Mol. Biol.

    Google Scholar 

  7. Hwang, J-K., King, G., Creighton, S., and Warshel, A. (1988) J. Am. Chem. Soc. (in press).

    Google Scholar 

  8. Valleau, J.P. and Torrie G.M. (1972) in Modern Theoretical Chemistry ed. Berne, B. (Plennum, New York) Vol 5 pp. 137

    Google Scholar 

  9. Warshel, A., J. Phys. Chem. (1982) 86, 2218.

    Article  CAS  Google Scholar 

  10. Hwang, J.-K. and Warshel A. (1987) J. Am. Chem. Soc. 109, 715.

    Article  CAS  Google Scholar 

  11. Marcus, R.A. (1968) J. Phys. Chem. 72, 891.

    Google Scholar 

  12. Bronsted, J.N. and Pederson, K. (1924) Z. Phys. Chem. 108, 185.

    CAS  Google Scholar 

  13. Hammond, G.S. (1955) J. Am. Chem. Soc. 77, 334.

    Article  CAS  Google Scholar 

  14. Albery, J.W. and Kreevoy, M.M. (1978) Adv. Phys. Org. Chem. 16, 87.

    CAS  Google Scholar 

  15. Warshel, A., Russell, S.T. and Sussman F. (1987) Israel J. Chem. 27, 217.

    Article  Google Scholar 

  16. a) Blake, C.C.F., Mair, G.A., North, A.C.T., Philips, D.C., Sarma, V.R. (1967) Proc. R. Soc. London, Ser. B, 167, 365.

    Google Scholar 

  17. Philips, D.C. (1966) Sci. Am. 215 78–90.

    Google Scholar 

  18. Warshel, A. and Levitt, M. (1976). J. Molec. Biol., 103, 227–249.

    Google Scholar 

  19. Dunn, B.M., Bruice, T.C., Adv. Enzymol. Relat. Areas Mol. Biol., (1973), 37, 1–59.

    CAS  Google Scholar 

  20. Warshel, A. (1981) Biochemistry 20, 3167.

    Article  PubMed  CAS  Google Scholar 

  21. Blow, D.M., Birktoft, J.J., and Hartley, S.S. (1969) Nature 221, 337–340

    Article  PubMed  CAS  Google Scholar 

  22. Kraut, J., Annu. Rev. Biochem, (1977) 46, 331–358.

    Article  PubMed  CAS  Google Scholar 

  23. Stroud, R.M., Kossiakoff, A.A., Chambers, J.L., (1977) Ann. Rev. Biophys. Bioeng. 6, 177–193 (1977).

    Google Scholar 

  24. Warshel, A. and Russell, S., (1986a) J. Am. Chem. Soc. 108, 6569–6579.

    Article  CAS  Google Scholar 

  25. Carter, P., and Wells, J.A., Nature, (submitted).

    Google Scholar 

  26. Craik, C.S., Roczniak, S., Largeman, C., and Rutter, W.J., (1987) Science 237, 909–913.

    Article  PubMed  CAS  Google Scholar 

  27. Wells, J.A., Cunningham, B.C., Craycar, T.P., and Estell, D.A. (1986) Philos. Trans. R. Soc. ( London) Ser. A No. 317, 415–423.

    Google Scholar 

  28. Warshel, A., and Sussman, F. (1986) Proc. Natl. Acad. Sci. (U.S.A.) 83, 3806–3810.

    Article  CAS  Google Scholar 

  29. Naray-Szabo, G., Sussman, F., Hwang, J-K, and Warshel, A. (submitted).

    Google Scholar 

  30. Cotton, F.A. Hazen, E.E., and Legg, M.J. (1979) Proc. Natl. Acad. Sci. 76 2551–2555.

    Google Scholar 

  31. Serpersu, E.H., Shortie, D. and Mildvan, A.S. (1987) Biochemistry, 26, 1289–1300.

    Article  PubMed  CAS  Google Scholar 

  32. Guthrie, J.D. (1977), J. Am. Chem. Soc. 99, 3991–4001.

    Google Scholar 

  33. Agvist, J and Warshel, A. (1988) in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Warshel, A. (1989). Microscopic Simulations of Chemical Reactions in Solutions and Protein Active Sites; Principles and Examples. In: Cooper, A., Houben, J.L., Chien, L.C. (eds) The Enzyme Catalysis Process. Progress in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1607-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1607-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1609-2

  • Online ISBN: 978-1-4757-1607-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics