The Role of the Environment in Chemical Reactions

  • James T. Hynes
Part of the Progress in Mathematics book series (NSSA)


The last decade has seen a renaissance in the study, both experimental and theoretical, of chemical reactions in solution1, 2. Naturally, a focus of these studies is the determination of the role of the solvent in affecting the rate constant for the chemical process. Here we attempt to give a very brief glimpse at some of the ideas and results that have emerged. We restrict the discussion exclusively to reactions in solution (and even then, to a very few topics). But it is likely that, at least in a general way, similar ideas should ultimately prove useful in the context of understanding enzyme catalysis rates.


Transition State Reaction Coordinate Transition State Theory Nucleophilic Displacement Generalize Langevin Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. T. Hynes, in “The Theory of Chemical Reactions,” M. Baer, ed. Vol. IV ( CRC Press, Boca Raton, FL 1985 ), p. 171.Google Scholar
  2. 2.
    J. T. Hynes, Ann. Rev. Phys. Chem. 36, 573 (1984).Google Scholar
  3. 3.
    H. Watson, this volume.Google Scholar
  4. 4.
    P. Carey, this volume.Google Scholar
  5. 5.
    S. Gladstone, K. J. Laidler and H. Eyring, “The Theory of Rate Processes,” (McGraw-Hill, New York, NY, 1941); D. G. Truhlar, W. L. Hase and J. T. Hynes, J. Phys. Chem. 87, 2664 (1983).Google Scholar
  6. 6.
    T. Fonseca, this volume.Google Scholar
  7. 7.
    B. M. Ladanyi and J. T. Hynes, J. Am. Chem. Soc. 108 585 (1986).Google Scholar
  8. 8.
    H. A. Kramers, Physica, 7, 284 (1940).CrossRefGoogle Scholar
  9. 9.
    S. K. Kim and G. R. Fleming, J. Phys. Chem. 92, 2168 (1988).CrossRefGoogle Scholar
  10. 10.
    G. Ciccotti, M. Ferrario, J. T. Hynes and R. Kapral, to be published.Google Scholar
  11. 11.
    J. P. Bergsma, J. R. Reimers, K. R. Wilson and J. T. Hynes, J. Chem. Phys. 15, 5625 (1986).CrossRefGoogle Scholar
  12. 12.
    J. Chandrasekhar, S. F. Smith and W. L. Jorgensen, J. Am. Chem. Soc. 107, 154 (1985).CrossRefGoogle Scholar
  13. 13.
    G. van der Zwan and J. T. Hynes, J. Chem. Phys. 76, 2993 (1982); ibid. 78, 4174 (1983); Chem. Phys. 90, 21 (1984).Google Scholar
  14. 14.
    R. F. Grote and J. T. Hynes, J. Chem. Phys 73, 2715 (1980).CrossRefGoogle Scholar
  15. 15.
    J. P. Bergsma, B. J. Gertner, K. R. Wilson and J. T. Hynes, J. Chem. Phys. 86, 1356 (1987); B. J. Gertner, J. P. Bergsma, K. R. Wilson, S. Lee and J. T. Hynes, ibid. 86, 1377 (1987).Google Scholar
  16. 16.
    B. J. Gertner, K. R. Wilson and J. T. Hynes, J. Chem. Phys., in press.Google Scholar
  17. 17.
    D. A. Zichi and J. T. Hynes, J. Chem. Phys. 88, 2513 (1988)CrossRefGoogle Scholar
  18. 18.
    D. A. Zichi, G. Ciccotti and J. T. Hynes, to be submitted; J. T. Hynes, J. Phys. Chem 90, 3701 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • James T. Hynes
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA

Personalised recommendations