Percolation Processes

  • John A. Rupley
  • Giorgio Careri
Part of the Progress in Mathematics book series (NSSA)

Abstract

Measurements of the MHz-frequency dielectric properties of partially hydrated lysozyme powders have demonstrated protonic conduction at the protein surface (Careri et al., 1985). The dependence of the dielectric response on hydration level shows, at a threshold value of the hydration, the explosive growth characteristic of a phase transition (Careri et al., 1986). This behavior will be seen to follow closely the percolation model.

Keywords

Critical Exponent Percolation Threshold Dielectric Response Percolation Model Hydration Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Careri, G., 1983, “Order and Disorder in Matter,” Benjamin/Cummings, Menlo Park.Google Scholar
  2. Careri, G., Geraci, M., Giansanti, A., and Rupley, J. A., 1985, Protonic conductivity of hydrated lysozyme powders at megahertz frequencies, Proc. Natl. Acad. Sci. U. S. A., 82: 5342–6.Google Scholar
  3. Careri, G., Giansanti, A., and Rupley, J. A., 1986, Proton percolation on hydrated lysozyme powders, Proc. Natl. Acad. Sci. U. S. A., 83: 6810–14.PubMedCrossRefGoogle Scholar
  4. Careri, G., Giansanti, A., and Rupley, J. A., 1988, Critical exponents of protonic percolation in hydrated lysozyme powders, Phys. Rev. A, 37:2703–2705.Google Scholar
  5. Deutscher, G., Zallen, R., and Adler, J., eds., 1983, “Annals of the Israel Physical Society, Vol. 5: Percolation Structures and Processes,” Adam Hilger, Bristol. Flory, P. J., 1941, J. Am. Chem. So., 63: 3091.Google Scholar
  6. Hill, T. L., 1949, Statistical mechanics of adsorption. VI. Localized unimolecular adsorption on a heterogeneous surface, J. Chem. Phys. 17:762–771.Google Scholar
  7. Hill, T. L., 1960, “An Introduction to Statistical Thermodynamics,” Addison-Wesley, Reading.Google Scholar
  8. Landau, L. D., and Lifshitz, E. M., 1977, “Statistical Physics, 3rd Edition Part 1,” Course of Theoretical Physics, Vol. 5, Pergamon Press, Oxford.Google Scholar
  9. Rupley, J. A., and Siemankowski, L., 1986, in: “Membranes Metabolism and Dry Organisms,” C. Leopold, ed., pp. 259272, Comstock Publishing Associates, Cornell Univ. Press, Ithaca.Google Scholar
  10. Rupley, J. A., Siemankowski, L., Careri, G., and Bruni, F., 1988, Two-dimensional protonic percolation on lightly hydrated purple membrane, Proc. Natl. Acad. Sci. U. S. A., in press.Google Scholar
  11. Scheraga, H. A., 1963, Intramolecular bonds in proteins. II. Noncovalent bonds, in: “The Proteins, Vol. 1. 2nd Ed,” H. Neurath and R. L. Hill, eds., pp. 477, Academic, New York.Google Scholar
  12. Stauffer, D., 1985, “Introduction to Percolation Theory,” Taylor and Francis, Philadelphia.Google Scholar
  13. Varo, G., and Keszthelyi, L., 1983, Photoelectric signals from dried oriented purple membranes of Halobacterium halobium, Biophys J., 43: 47–51.Google Scholar
  14. Zallen, R., 1983, “The Physics of Amorphous Solids,” John Wiley, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • John A. Rupley
    • 2
    • 1
  • Giorgio Careri
    • 2
    • 1
  1. 1.Department of BiochemistryUniversity of ArizonaTucsonUSA
  2. 2.Dipartimento di FisicaUniversita di Roma IRomaItaly

Personalised recommendations