Structural Distributions, Fluctuations and Conformational Changes in Proteins Investigated by Mössbauer Spectroscopy and X-Ray Structure Analysis

  • Fritz Parak
Part of the Progress in Mathematics book series (NSSA)


This contribution shows how X-ray structure analysis and Mössbauer spectroscopy can be used as complementary methods in the investigation of protein dynamics. X-ray analysis measures structural distributions via mean square displacements without having any time resolution. Mössbauer spectroscopy on 57Fe labels dynamics on a time scale faster 100 ns. Even in the extrapolation to T = 0 K myoglobin has no well defined structure with one energy minimum. The molecules are in different conformational substates. At physiological temperatures the structural distribution in the liganded (or unliganded) conformation is larger than the structural differences between these conformations. Fluctuations through conformational substates and changes of the conformation are highly correlated. The structure distribution around the heme iron influences the oxygen binding.

Fluctuations in myoglobin envolve diffusion-like segmental motions in a restricted space. The characteristic size of the segments is about 5 A. Drying of the sample or freezing of the hydration water reduces these fluctuations drastically. The Brownian type motion of segments can also be found in membranes.


Wave Train Heme Iron Structural Distribution M6ssbauer Spectrum Heme Pocket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.C. Phillips (1966) in: Advances in Structure Research by Diffraction Methods, Vol. 2, p. 75, ed. R. Brill, R. Mason, Vieweg BraunschweigGoogle Scholar
  2. 2.
    R. Huber (1988), Angew. Chem. 100, 79–89CrossRefGoogle Scholar
  3. 3.
    Frauenfelder H., Petsko G.A., Tsernoglou D. (1979), Nature 280, 558563Google Scholar
  4. 4.
    Frauenfelder H., Parak F. and Young R.D. (1988), Ann. Rev. Biophys. Chem. 17, 451–479Google Scholar
  5. 5.
    Topics in Applied Physics, Vol. 5, Mössbauer Spectrocopy, ed. U.Gonser, Springer Verlag (1975)Google Scholar
  6. 6.
    Topics in Current Physics, Mössbauer Spectroscopy II, ed. U. Gonser, Springer Verlag (1981)Google Scholar
  7. 7.
    Parak F. (1986), Methods in Enzymology, Vol. 127, ed.: L. Packer, Academic Press, pages 196–206Google Scholar
  8. 8.
    Parak F. and Reinisch L. (1986), Methods in Enzymology, Vol. 131, ed. C.H.W. Hirs and S.N. Timasheff, Academic Press, pages 568–607Google Scholar
  9. 9.
    Parak F., Hartmann H., Aumann K.D., Reuscher H., Rennekamp G., Bartunik H. and Steigemann W. (1987), Eur. Biophys. J. 15, 237–249Google Scholar
  10. 10.
    Huber R., Epp 0., Steigemann W., Formanek H. (1971), Eur.J.Biochem. 19, 42–50PubMedCrossRefGoogle Scholar
  11. 11.
    Hartmann H., Steigemann W., Reuscher H. and Parak F. (1987), Eur. Biophys. J. 14, 337–348Google Scholar
  12. 12.
    Austin R.H., Beeson K.W., Eisenstein L., Frauenfelder H., Gunsalus I.C. (1975), Biochemistry 14, 5355–5372PubMedCrossRefGoogle Scholar
  13. 13.
    Case D.A. and and Karplus M. (1979), J. Mol. Biol. 132 343–368Google Scholar
  14. 14.
    Ringe D. and Petsko G.A., Kerr D.E., Ortiz de Montellano P.R. (1984) Biochemistry 23, 2–4PubMedCrossRefGoogle Scholar
  15. 15.
    Parak F., Knapp E.W. and Kucheida D. (1982), J. Mol. Biol. 161 177194Google Scholar
  16. 16.
    Singh G.P., Parak F., Hunklinger S. and Dransfeld K. (1981), Phys. Rev. Lett. 47, 685–688Google Scholar
  17. 17.
    Parak F., Heidemeier J., Knapp E.W. (1988), in: Biological and Artificial Intelligence Systems; ed. E. Clementi and S. Chin, ESCOM Science Publishers B.V., in pressGoogle Scholar
  18. 18.
    Frauenfelder H. (1985), in: Structure and Motion: Membranes, Nucleic Acids and Proteins; ed. E. Clementi, G. Corongiu, M.H. Sarma, R.H. Sarma, Adenine Press, pages 205–217Google Scholar
  19. 19.
    Parak F. and Knapp E.W. (1984), Proc. Natl. Acad. Sci. USA 81, 70887092Google Scholar
  20. 20.
    Parak F., Heidemeier J. and Nienhaus G.U. (1988), Hyperfine Interactions 40, 147–158CrossRefGoogle Scholar
  21. 21.
    Krupyanskii Yu.F., Parak F., Goldanskii V.I., Mössbauer R.L., Gaubmann E., Engelmann H. and Suzdalev I.P. (1982), Z. Naturforschg. 37 c 57–62Google Scholar
  22. 22.
    Nienhaus G.U. and Parak F. (1986), Hyperfine Interactions 29, 14511454Google Scholar
  23. 23.
    Ansari A., Berendzen J., Bowne S.F., Frauenfelder H., Iben I.E.T., Sauke T.B., Shyamsunder E., Young R.D. (1985), Proc. Natl. Acad. Sci. USA 82, 5000–5004Google Scholar
  24. 24.
    Parak F., Frolov E.N., Kononenko A.A., Mössbauer R.L., Goldanskii V.I. and Rubin A.B. (1980), FEES Lett. 117 368–372Google Scholar
  25. 25.
    Parak F., Fischer M., Graffweg E. and Formanek H. (1987), in: Structure and Dynamics of Nucleic Acids, Proteins and Membranes, ed.:Google Scholar
  26. E. Clementi and S. Chin, Plenum Publish. Comp. New York, pages 139–148Google Scholar
  27. 26.
    Heidemeier J., Fischer M., Parak F., Engelhard M., Kohl K.D., Hess B. and Formanek H., submitted to Eur. Biophys. J.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Fritz Parak
    • 1
  1. 1.Institut für Physikalische Chemie der UniversitätMünsterFederal Republic of Germany

Personalised recommendations