The Application of 1H Nuclear Magnetic Resonance Spectroscopy to the Study of Enzymes

  • Christina Redfield
Part of the Progress in Mathematics book series (NSSA)


Nuclear magnetic resonance spectroscopy has been used to study enzymes for more than 30 years. The first 1H NMR spectrum of a protein was published by Saunders, Wishnia and Kirkwood in 1957 1. The 40 MHz spectrum of ribonuclease consisted of 4 broad peaks. The authors assigned the most downfield peak in the spectrum to the aromatic protons and the most upfield peak to hydrogens bonded to aliphatic carbon atoms attached only to other aliphatic carbon. They reported that the intensities of these two peaks were consistent with the amino acid composition of ribonuclease. Later in 1957 Jardetsky and Jardetsky used the chemical shifts of the amino acids to predict a complete NMR spectrum for ribonuclease 2. Their predicted intensities were in good agreement with the intensities of the four peaks in the ribonuclease spectrum, and they concluded that the NMR spectra of amino acids provide a rational basis for the interpretation of the NMR spectra of proteins in solution. Today the complete interpretation of the NMR spectra of proteins is still the goal of many NMR spectroscopists; only the level of detail of this interpretation has changed. The NMR spectra of the amino acid building blocks are still used to interpret complex protein spectra.


Cross Peak NOESY Spectrum Cosy Spectrum Sequential Assignment Fingerprint Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Saunders, A. Wishnia, and J. G. Kirkwood, The NMR Spectrum of Ribonuclease, J. Am. Chem. Soc. 79: 3289 (1957).CrossRefGoogle Scholar
  2. 2.
    O. Jardetsky and C. D. Jardetsky, An Interpretation of the Proton Magnetic Resonance Spectrum of Ribonuclease, J. Am. Chem. Soc. 79: 5322 (1957).CrossRefGoogle Scholar
  3. 3.
    A. Kowalsky, NMR Studies of Proteins, J. Biol. Chem. 237: 1807 (1962).PubMedGoogle Scholar
  4. 4.
    M. Mandel, Proton Magnetic Resonance Spectra of Some Proteins, J. Biol. Chem. 240: 1586 (1965).PubMedGoogle Scholar
  5. 5.
    D. H. Meadows, J. L. Markley, J. S. Cohen, and O. Jardetsky, NMR Studies of the Structure and Binding Sites of Enzymes, I. Histidine Residues, Proc. Natl. Acad. Sci. U.S.A. 58: 1307 (1967).PubMedCrossRefGoogle Scholar
  6. 6.
    C. C. MacDonald and W. D. Phillips, Manifestations of the Tertiary Structures of Proteins in High-Frequency NMR, J. Am. Chem. Soc. 89: 6332 (1967).CrossRefGoogle Scholar
  7. 7.
    H. Sternlicht and D. Wilson, Magnetic Resonance Studies of Macromolecules, I. Aromatic-Methyl Interactions and Helical Structure Effects in Lysozyme, Biochemistry 6: 2881 (1967).PubMedCrossRefGoogle Scholar
  8. 8.
    R. R. Ernst and W. A. Anderson, Application of Fourier Transform Spectroscopy to Magnetic Resonance, Rev. Sci. Instr. 37: 93 (1965).CrossRefGoogle Scholar
  9. 9.
    K. Wûthrich, “NMR in Biological Research: Peptides and Proteins”, North Holland, Amsterdam (1976).Google Scholar
  10. 10.
    I. D. Campbell and C. M. Dobson, The Application of High Resolution NMR to Biological Systems, in: “Methods of Biochemical Analysis Vol. 25”, D. Glick, ed., Wiley, New York (1979).Google Scholar
  11. 11.
    I. D. Campbell, C. M. Dobson, and R. J. P. Williams, Proton Magnetic Resonance Studies of the Tyrosine Residues in Hen Lysozyme- Assignment and Detection of Conformational Mobility, Proc. R. Soc. London B 189: 503 (1975).CrossRefGoogle Scholar
  12. 12.
    I. D. Campbell and C. M. Dobson, Spin Echo Double Resonance: A Novel Method for Detecting Decoupling in Fourier Transform NMR, J. Chem. Soc., Chem. Commun. 1975: 750 (1975).Google Scholar
  13. 13.
    I. D. Campbell, C. M. Dobson, R. J. P. Williams, and A. V. Xavier, Resolution Enhancement of Protein PMR Spectra Using the Difference Between a Broadened and a Normal Spectrum, J. Mag. Res. 11: 172 (1973).Google Scholar
  14. 14.
    G. E. Chapman, B. D. Abercrombie, P. D. Cary, and E. M. Bradbury, The Measurement of Small Nuclear Overhauser Effects in the 1H Spectra of Proteins, and Their Application to Lysozyme, J. Mag. Res. 31: 459 (1978).Google Scholar
  15. 15.
    F. M. Poulsen, J. C. Hoch, and C. M. Dobson, A Structural Study of the Hydrophobic Box Region of Lysozyme in Solution Using Nuclear Overhauser Effects, Biochemistry 19: 2597 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Wüthrich and G. Wagner, NMR of Labile Protons in Basic Pancreatic Trypsin Inhibitor, J. Mol. Biol. 130: 1 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    J. A. Lenstra, B. F. J. M. Bolscher, S. Stob, J. J. Beintema, and R. Kaptein, The Aromatic Residues of Bovine Pancreatic Ribonuclease Studied by 1H NMR, Eur. J. Biochem. 98: 385 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    G. R. Moore and R. J. P. Williams, NMR Studies of Eukaryotic Cytochrome c: Assignment of Resonances of Aliphatic Amino Acids, Eur. J. Biochem. 103: 503 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Jeener, Ampere International Summer School, Basko Polje, Yugoslavia (1971).Google Scholar
  20. 20.
    K. Nagayama, K. Wüthrich, P. Bachmann, and R. R. Ernst, Two-Dimensional J-resolved 111 NMR Spectroscopy for Studies of Biological Macromolecules, Biochem. Biophys. Res. Commun. 78: 99 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    G. Wagner and K. Wüthrich, Sequential Resonance Assignments in Protein 111 NMR Spectra: Basic Pancreatic Trypsin Inhibitor, J. Mol. Biol. 155: 347 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    Anil Kumar, R. R. Ernst, and K. Wüthrich, A Two-Dimensional Nuclear Overhauser Enhancement (2D NOE) experiment for the Elucidation of Complete Proton-Proton Cross Relaxation Networks in Biological Macromolecules, Biochem. Biophys. Res. Commun. 95: 1 (1980).Google Scholar
  23. 23.
    T. A. Holak and J. H. Prestegard, Secondary Structure of Acyl Carrier Protein as Derived from Two-dimensional 111 NMR Spectroscopy, Biochemistry 25: 5766 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    A. D. Kline and K. Wüthrich, Complete Sequence-specific 111 NMR Assignments for the a-amylase Polypeptide Inhibitor Tendamistat from Streptomyces tendae, J. Mol. Biol. 192: 869 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    P. C. Driscoll, H. A. O. Hill and C. Redfield, 111 NMR Assignments and Cation Binding Studies of Spinach Plastocyanin, Eur. J. Biochem. 170: 279 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    C. Redfield and C. M. Dobson, Sequential 111 NMR Assignment and Secondary Structure of Hen Egg-White Lysozyme in Solution, Biochemistry 27: 122 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Wüthrich, “NMR of Proteins and Nucleic Acids”, Wiley, New York (1986).Google Scholar
  28. 28.
    M. Billeter, W. Braun, and K. Wüthrich, Sequential Resonance Assignments in Protein 111 NMR Spectra: Computation of Sterically Allowed Proton-Proton Distances and Statistical Analysis of Proton-Proton Distances in Single Crystal Protein Conformations, J. Mol. Biol. 155: 321 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    P. Strop, G. Wider, and K. Wüthrich, Assignment of the 111 NMR Spectrum of the Proteinase Inhibitor IIA from Bull Seminal Plasma by Two-dimensional NMR at 500 MHz, J. Mol. Biol. 166: 641 (1983).Google Scholar
  30. 30.
    M. P. Williamson, T. F. Havel, and K. Wüthrich, Solution Conformation of Proteinase Inhibitor IIA from Bull Seminal Plasma by 111 NMR and Distance Geometry, J. Mol. Biol. 182: 295 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    R. Kaptein, E. R. P. Zuiderweg, R. M. Scheek, R. M. Boelens and W. F. van Gunsteren, A Protein Structure from NMR Data: lac Repressor Headpiece, J. Mol. Biol. 182: 179 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    R. M. Cooke, A. J. Wilkinson, M. Baron, A. Pastore, M. J. Tappin, I. D. Campbell, H. Gregory, and B. Sheard, The Solution Structure of Human Epidermal Growth Factor, Nature 327: 339 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    A. D. Kline, W. Braun, and K. Wüthrich, Studies by 111 NMR and Distance Geometry of the Solution Conformation of the a-Amylase Inhibitor Tendamistat, J. Mol. Biol. 189: 377 (1986).CrossRefGoogle Scholar
  34. 34.
    V. Saudek, and R. J. P. Williams, Secondary Structure of Acylphosphatase from Rabbit Skeletal Muscle: A NMR Study, J. Mol. Biol. 199: 233 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    T. Imoto, L. N. Johnson, A. C. T. North, D. C. Phillips, and J. A. Rupley, Vertebrate Lysozymes, in: “The Enzymes”, P. D. Boyer, ed., Academic Press, New York (1972).Google Scholar
  36. 36.
    C. M. Dobson, Studies of Protein Structure and Dynamics by Proton NMR, in: “Structure and Dynamics: Nucleic Acids and Proteins”, E. Clementi and R. H. Sarma, ed., Adenine Press, New York (1983).Google Scholar
  37. 37.
    C. M. Dobson and P. A. Evans, Protein Folding Kinetics from Magnetization Transfer NMR, Biochemistry 23: 4267 (1984).CrossRefGoogle Scholar
  38. 38.
    J. Boyd, C. M. Dobson, and C. Redfield, Identification of Glycine Spin Systems in 111 NMR Spectra of Proteins Using Multiple-Quantum Coherences, FEBS. Lett. 186: 35 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    D. M. LeMaster and F. M. Richards, NMR Sequential Assignment of Escherichia coli Thioredoxin Utilizing Random Fractional Deuteration, Biochemistry 27: 142 (1988).PubMedCrossRefGoogle Scholar
  40. 40.
    L. P. McIntosh, F. W. Dahiquist, and A. G. Redfield, Proton NMR and NOE Structural and Dynamic Studies of Larger Proteins and Nucleic Acids Aided by Isotope Labels: T4 Lysozyme, J. Biocool. Struc. Dyn. 5: 21 (1987).CrossRefGoogle Scholar
  41. 41.
    C. C. F. Blake, G. A. Mair, A. C. T. North, D. C. Phillips, and V. R. Sarma, On the Conformation of the Hen Egg-White Lysozyme Molecule, Proc. R. Soc. London B 167: 365 (1967).CrossRefGoogle Scholar
  42. 42.
    W. Braun, G. Wider, K. H. Lee, and K. Wüthrich, Conformation of Glucagon in a Lipid-Water Interphase by 1H NMR, J. Mol. Biol. 169: 921 (1983).PubMedCrossRefGoogle Scholar
  43. 43.
    A. T. Brunger, G. M. Clore, A. M. Gronenborn, and M. Karplus, Three-dimensional Structure of Proteins Determined By Molecular Dynamics with Inter-proton Distance Restraints: Application to Crambin, Proc. Natl. Acad. Sci. U.S.A. 83: 3801 (1986).PubMedCrossRefGoogle Scholar
  44. 44.
    M. Karplus, Contact Electron-Spin Coupling of Nuclear Magnetic Moments, J. Chem. Phys. 30: 11 (1959).Google Scholar
  45. 45.
    A. Pardi, M. Billeter, and K. Wüthrich, Calibration of the Angular Dependence of the Amide Proton-Ca Proton Coupling Constants, 3Jv,„, in a Globular Protein, J. Mol. Biol. 180: 741 (1984).PubMedCrossRefGoogle Scholar
  46. 46.
    C. Walsh, “Enzymatic Reaction Mechanisms”, W. H. Freeman, San Francisco (1979).Google Scholar
  47. 47.
    J. S. Cohen, Proton Magnetic Resonance Studies of Human Lysozyme, Nature 223: 43 (1969).PubMedCrossRefGoogle Scholar
  48. 48.
    J. S. Cohen and O. Jardetsky, NMR Studies of the Structure and Binding Sites of Enzymes, II. Spectral Assignments and Inhibitor Binding in Hen Egg-White Lysozyme, Proc. Natl. Acad. Sci. U.S.A. 60: 92 (1968).PubMedCrossRefGoogle Scholar
  49. 49.
    C. C. F. Blake, R. Cassels, C. M. Dobson, F. M. Poulsen, R. J. P. Williams, and K. S. Wilson, Structure and Binding Properties of Hen Lysozyme Modified at Tryptophan 62, J. Mol. Biol. 147: 73 (1981).PubMedCrossRefGoogle Scholar
  50. 50.
    J. Jeener, B. H. Meier, P. Bachmann, and R. R. Ernst, Investigation of Exchange Processes by Two-dimensional NMR Spectroscopy, J. Chem. Phys. 71: 4546 (1979).CrossRefGoogle Scholar
  51. 51.
    H. Oschkinat, C. Griesinger, P. J. Kraulis, O. W. Sorensen, R. R. Ernst, A. M. Gronenborn, and G. M. Clore, Three-dimensional NMR Spectroscopy of a Protein in Solution, Nature 332: 371 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Christina Redfield
    • 1
  1. 1.Inorganic Chemistry LaboratoryUniversity of OxfordOxfordEngland

Personalised recommendations