The Fluorescence Properties of Aromatic Amino Acids: Their Role in the Understanding of Enzyme Structure and Dynamics

  • Arthur G. Szabo
Part of the Progress in Mathematics book series (NSSA)


Fluorescence spectroscopy has been extensively used in studies of enzymes and proteins (1–5). It has been shown to provide insights into important aspects of the interrelationships of enzyme structure, function and dynamics. The reasons for the wide applicability of fluorescence spectroscopy are due to several factors. Fluorescence has a high degree of sensitivity allowing one to work at low concentrations typical of “in vivo” conditions. Since the process depends on the absorption and emission of light energy it is selective, probing only those molecular subunits which have appropriate chromophoric properties. A wide vartiety of information is available including the study of inter and intramolecular interactions; the local environment of the fluorescent chromOphore; conformational heterogeneity; the rates of diffusional processes; the dynamics of the flexibility of the protein segments; and the kinetics of enzymatic processes. These studies have been facilitated by the relative ease of obtaining high quality fluorescence measurements using commercially available instruments.


Aromatic Amino Acid Fluorescence Quantum Yield Fluorescence Decay Decay Component Conformational Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.J. Pesce, C.G. Rosen, and T.L. Pasby, “Fluorescence Spectroscopy. An Introduction for Biology and Medicine”, Marcel-Dekker, New York (1971).Google Scholar
  2. 2.
    R.F. Chen, H. Edelhock eds., Biochemical Fluorescence Concepts“, Vol. 1 and 2, Marcel-Dekker, New Yor (1976).Google Scholar
  3. 3.
    R.F. Steiner, ed., “Excited States of Biopolymers”, Plenum, New York (1983).Google Scholar
  4. 4.
    L. Brand, J.R. Knutson, L. Davenport, J.M. Beechem, R.E. Dale, D.G. Walbridge, and A.A. Kowalczyk, “Spectroscopy and the Dynamics of Molecular Biological Systems”, Academic Press, London (1985).Google Scholar
  5. 5.
    D.L. Taylor, A.S. Waggoner, R.F. Murphy, F. Lanni, R.R. Birge, eds. “Applications of Fluorescence in the Biomedical Sciences”, A.R. Liss, New York (1986).Google Scholar
  6. 6.
    H.H. Jaffe and M. Orchin, “Theory and Applications of Ultraviolet Spectroscopy”, Wiley, New York (1962).Google Scholar
  7. 7.
    J.B. Birks, “Photophysics of Aromatic Molecules”, Wiley, London (1970).Google Scholar
  8. 8.
    J.N. Miller, “Standards in Fluorescence Spectroscopy”, Chapman and Hall, London (1981).Google Scholar
  9. 9.
    M. Eftink and C.A. Ghiron, Anal. Biochem. 114: 119–227 (1981).CrossRefGoogle Scholar
  10. 10.
    W.R. Laws and L. Brand, J. Phys. Chem. 83: 795–802 (1979).Google Scholar
  11. 11.
    C.M. Harris and B.K. Selinger, J. Phys. Chem. 84: 1366–1371 (1980).Google Scholar
  12. 12.
    B. Donzel, P. Gauduchon, and P. Wahl, J. Am. Chem. Soc. 96: 801–808 (1974).CrossRefGoogle Scholar
  13. 13.
    J.M. Beechem, M. Amellot, and L. Brand, Anal. Intrum. 14: 379–402 (1985).Google Scholar
  14. 14.
    J.R. Knutson, J.M. Beechem, and L. Brand, Chem. Phys. Lett. 102: 501–507 (1983).Google Scholar
  15. 15.
    J.M. Beechem, J.R. Knutson, J.B.A. Ross, B.W. Turner, and L. Brand, Biochemistry, 22: 6054–6058 (1983).CrossRefGoogle Scholar
  16. 16.
    J.R. Lakowicz, and B.P. Maliwal, Biophys. Chem. 21: 61–78 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    D.M. Jameson, E. Gratton, and R.D. Hall, Appl. Spectros. Rev., 20: 55–106 (1984).Google Scholar
  18. 18.
    G. Ide, Y. Engelborghs, and A. Persoons, Rev. Sci. Instrum. 54: 841–844 (1983).CrossRefGoogle Scholar
  19. 19.
    E. Gratton, and M. Limkeman, Biophys. J. 44: 315–324 (1983).Google Scholar
  20. 20.
    A.J.W.G. Visser, Ed. “Time Resolved Fluorescence Spectroscopy”, Anal. Instrum. 14: 193–566 (1985).Google Scholar
  21. 21.
    D.V. O’Connor and D. Phillips, “Time-correlated Single Photon Counting”, Academic Press, New York (1984).Google Scholar
  22. 22.
    M. Zuker, A.G. Szabo, L. Bramall, D.T. Krajcarski, Rev. Sci. Instrum. 56: 14–22 (1985).CrossRefGoogle Scholar
  23. 23.
    R.B. Cundall and R.E. Dale, eds., “Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology”, Plenum, New York (1983).Google Scholar
  24. 24.
    D.J.S. Birch, R.E. Imhof, and A. Dutch, J. Phys. E. Sci. Instrum. 17: 417–418 (1984).Google Scholar
  25. 25.
    J.R. Alcala, E. Gratton, and F.G. Prendergast, Biophys. J. 51: 597–604 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    D.R. James and W.R. Ware, Chem. Phys. Lett. 126: 7–11 (1986).Google Scholar
  27. 27.
    P. Bayley and S. Martin, in “Fluorescent Biomolecules”, E. Gratton and D. Jameson, eds. in press.Google Scholar
  28. 28.
    A.K. Livesey and J.C. Brochon, Biophys. J. 52: 693–706 (1988).Google Scholar
  29. 29.
    G. Weber, Biochem. J. 51: 155–167 (1952).Google Scholar
  30. 30.
    J.R. Lakowicz, H. Cherek, I. Gryczynski, N. Joshi, and M.L. Johnson, Biophys. J. 51: 755–768 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    J.M. Beechem, J.R. Knutson, and L. Brand, Biochem. Soc. Trans. 832–835 (1986).Google Scholar
  32. 32.
    W.R. Laws, J.B.A. Ross, H.R. Wyssbrod, J.M. Beechem, L. Brand, and J.C. Sutherland, Biochemistry, 25: 599–607 (1986).Google Scholar
  33. 33.
    R.F. Chen, Anal. Lett. 1: 35 (1967).CrossRefGoogle Scholar
  34. 34.
    D.M. Rayner, D.T. Krajcarski, and A.G. Szabo, Can. J. Chem. 56: 1238–1245 (1978).CrossRefGoogle Scholar
  35. 35.
    S. Pundak and R.S. Roche, Biochemistry 23: 1549–1555 (1984).PubMedCrossRefGoogle Scholar
  36. 36.
    J.P. MacManus, A.G. Szabo and R.E. Williams, Biochem. J. 220: 261–268 (1984).PubMedGoogle Scholar
  37. 37.
    T. Kimura, and J. Ting, Biochem. Biophys. Res. Commun. 45: 1227–1231 (1971).CrossRefGoogle Scholar
  38. 38.
    B. Lux, J. Baudier, and D. Gerard, Photochem. Photobiol. 42: 245–251 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    A.G. Szabo, K.R. Lynn, D.T. Krajcarski, and D. Rayner, J. Lumin. 18: 585–585 (1979).Google Scholar
  40. 40.
    J.B.A. Ross, W.R. Laws, A. Buku, J.C. Sutherland, and H.R. Wyssbrod, Biochemistry 25: 607–612 (1986).PubMedCrossRefGoogle Scholar
  41. 41.
    D. Creed, Photochem. Photobiol. 39: 537–562 (1984).Google Scholar
  42. 42.
    A.G. Szabo and D.M. Rayner, J. Am. Chem. Soc. 102: 554–563 (1980).CrossRefGoogle Scholar
  43. 43.
    M. Bazin, K.L. Patterson, and R. Santus, J. Phys. Chem. 87: 189–190 (1983).CrossRefGoogle Scholar
  44. 44.
    A. Kawski and I. Gryczynski, Bull. Acad. Polon. Sci. 21: 1061–1066 (1973).Google Scholar
  45. 45.
    E.M. Evleth, 0. Chabut, and P. Barriere, J. Phys. Chem. 81: 1913 (1977).CrossRefGoogle Scholar
  46. 46.
    S.R. Meech, D. Phillips and A.G. Lee, Chem. Phys. 80: 317–328Google Scholar
  47. 47.
    B. Valeur and G. Weber, Photochem. Photobiol. 25: 441–444 (1977).PubMedCrossRefGoogle Scholar
  48. 48.
    P.-S. Song and W.E. Kurtin, J. Am. Chem. Soc. 91: 4892–4906 (1969).CrossRefGoogle Scholar
  49. 49.
    M.S. Walker, T.W. Bednar, and R. Lumry, J. Chem. Phys. 47: 1020–1028 (1967).CrossRefGoogle Scholar
  50. 50.
    B. Skalski, D.M. Rayner, and A.G. Szabo, Chem. Phys. Lett. 70: 587–590 (1980).Google Scholar
  51. 51.
    D. Jameson and G. Weber, J. Phys. Chem. 85: 953–958 (1981).Google Scholar
  52. 52.
    R.J. Robbins, G.R. Fleming, G.S. Beddard, G.W. Robinson, P.J. Thistlewaite, and G.J. Woolfe, J. Am. Chem. Soc. 102: 6271–6279 (1980).CrossRefGoogle Scholar
  53. 53.
    I. Saito, H. Sugiyama, A. Yamamoto, S. Muramatsu, and T. Matsuura, J. Am. Chem. Soc. 106: 4286–4287 (1984).CrossRefGoogle Scholar
  54. 54.
    E. Gudgin, R.L. Delgado, and W.R. Ware, Can. J. Chem. 59: 1037–1044 (1981).CrossRefGoogle Scholar
  55. 55.
    E. VanderDonckt, Bull. Soc. Chim. Belg. 78: 69–75 (1969).Google Scholar
  56. 56.
    A.G. Szabo, D.T. Krajcarski, P. Cavatorta, L.Masotti, and M.L. Barcellona, Photochem. Photobiol. 44: 143–150 (1986).CrossRefGoogle Scholar
  57. 57.
    L. Masotti, P. Cavatorta, A.G. Szabo, G. Farruggia, and G. Sartor, “Fluorescent Biomolecules”, E. Gratton and D. Jameson eds, in press (1988).Google Scholar
  58. 58.
    B. Alpert, D.M. Jameson, R. Lopez-Delgado, and R. Schooley, Photochem. Photobiol. 30: 479–481 (1979).CrossRefGoogle Scholar
  59. 59.
    A.G. Szabo in “Time Resolved Fluorescence Spectroscopy in Biochemistry and Biology”, R.B. Cundall and R.E. Dale, Plenum, New York (1983).Google Scholar
  60. 60.
    C.M. Hutnik and A.G. Szabo. submitted (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Arthur G. Szabo
    • 1
  1. 1.Division of Biological Sciences Protein Biochemistry and SpectroscopyNational Research CouncilOttawaCanada

Personalised recommendations