Skip to main content

The Fluorescence Properties of Aromatic Amino Acids: Their Role in the Understanding of Enzyme Structure and Dynamics

  • Chapter
The Enzyme Catalysis Process

Part of the book series: Progress in Mathematics ((NSSA))

  • 178 Accesses

Abstract

Fluorescence spectroscopy has been extensively used in studies of enzymes and proteins (1–5). It has been shown to provide insights into important aspects of the interrelationships of enzyme structure, function and dynamics. The reasons for the wide applicability of fluorescence spectroscopy are due to several factors. Fluorescence has a high degree of sensitivity allowing one to work at low concentrations typical of “in vivo” conditions. Since the process depends on the absorption and emission of light energy it is selective, probing only those molecular subunits which have appropriate chromophoric properties. A wide vartiety of information is available including the study of inter and intramolecular interactions; the local environment of the fluorescent chromOphore; conformational heterogeneity; the rates of diffusional processes; the dynamics of the flexibility of the protein segments; and the kinetics of enzymatic processes. These studies have been facilitated by the relative ease of obtaining high quality fluorescence measurements using commercially available instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Pesce, C.G. Rosen, and T.L. Pasby, “Fluorescence Spectroscopy. An Introduction for Biology and Medicine”, Marcel-Dekker, New York (1971).

    Google Scholar 

  2. R.F. Chen, H. Edelhock eds., Biochemical Fluorescence Concepts“, Vol. 1 and 2, Marcel-Dekker, New Yor (1976).

    Google Scholar 

  3. R.F. Steiner, ed., “Excited States of Biopolymers”, Plenum, New York (1983).

    Google Scholar 

  4. L. Brand, J.R. Knutson, L. Davenport, J.M. Beechem, R.E. Dale, D.G. Walbridge, and A.A. Kowalczyk, “Spectroscopy and the Dynamics of Molecular Biological Systems”, Academic Press, London (1985).

    Google Scholar 

  5. D.L. Taylor, A.S. Waggoner, R.F. Murphy, F. Lanni, R.R. Birge, eds. “Applications of Fluorescence in the Biomedical Sciences”, A.R. Liss, New York (1986).

    Google Scholar 

  6. H.H. Jaffe and M. Orchin, “Theory and Applications of Ultraviolet Spectroscopy”, Wiley, New York (1962).

    Google Scholar 

  7. J.B. Birks, “Photophysics of Aromatic Molecules”, Wiley, London (1970).

    Google Scholar 

  8. J.N. Miller, “Standards in Fluorescence Spectroscopy”, Chapman and Hall, London (1981).

    Google Scholar 

  9. M. Eftink and C.A. Ghiron, Anal. Biochem. 114: 119–227 (1981).

    Article  Google Scholar 

  10. W.R. Laws and L. Brand, J. Phys. Chem. 83: 795–802 (1979).

    Google Scholar 

  11. C.M. Harris and B.K. Selinger, J. Phys. Chem. 84: 1366–1371 (1980).

    Google Scholar 

  12. B. Donzel, P. Gauduchon, and P. Wahl, J. Am. Chem. Soc. 96: 801–808 (1974).

    Article  CAS  Google Scholar 

  13. J.M. Beechem, M. Amellot, and L. Brand, Anal. Intrum. 14: 379–402 (1985).

    Google Scholar 

  14. J.R. Knutson, J.M. Beechem, and L. Brand, Chem. Phys. Lett. 102: 501–507 (1983).

    Google Scholar 

  15. J.M. Beechem, J.R. Knutson, J.B.A. Ross, B.W. Turner, and L. Brand, Biochemistry, 22: 6054–6058 (1983).

    Article  CAS  Google Scholar 

  16. J.R. Lakowicz, and B.P. Maliwal, Biophys. Chem. 21: 61–78 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. D.M. Jameson, E. Gratton, and R.D. Hall, Appl. Spectros. Rev., 20: 55–106 (1984).

    Google Scholar 

  18. G. Ide, Y. Engelborghs, and A. Persoons, Rev. Sci. Instrum. 54: 841–844 (1983).

    Article  CAS  Google Scholar 

  19. E. Gratton, and M. Limkeman, Biophys. J. 44: 315–324 (1983).

    Google Scholar 

  20. A.J.W.G. Visser, Ed. “Time Resolved Fluorescence Spectroscopy”, Anal. Instrum. 14: 193–566 (1985).

    Google Scholar 

  21. D.V. O’Connor and D. Phillips, “Time-correlated Single Photon Counting”, Academic Press, New York (1984).

    Google Scholar 

  22. M. Zuker, A.G. Szabo, L. Bramall, D.T. Krajcarski, Rev. Sci. Instrum. 56: 14–22 (1985).

    Article  CAS  Google Scholar 

  23. R.B. Cundall and R.E. Dale, eds., “Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology”, Plenum, New York (1983).

    Google Scholar 

  24. D.J.S. Birch, R.E. Imhof, and A. Dutch, J. Phys. E. Sci. Instrum. 17: 417–418 (1984).

    Google Scholar 

  25. J.R. Alcala, E. Gratton, and F.G. Prendergast, Biophys. J. 51: 597–604 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. D.R. James and W.R. Ware, Chem. Phys. Lett. 126: 7–11 (1986).

    Google Scholar 

  27. P. Bayley and S. Martin, in “Fluorescent Biomolecules”, E. Gratton and D. Jameson, eds. in press.

    Google Scholar 

  28. A.K. Livesey and J.C. Brochon, Biophys. J. 52: 693–706 (1988).

    Google Scholar 

  29. G. Weber, Biochem. J. 51: 155–167 (1952).

    Google Scholar 

  30. J.R. Lakowicz, H. Cherek, I. Gryczynski, N. Joshi, and M.L. Johnson, Biophys. J. 51: 755–768 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. J.M. Beechem, J.R. Knutson, and L. Brand, Biochem. Soc. Trans. 832–835 (1986).

    Google Scholar 

  32. W.R. Laws, J.B.A. Ross, H.R. Wyssbrod, J.M. Beechem, L. Brand, and J.C. Sutherland, Biochemistry, 25: 599–607 (1986).

    Google Scholar 

  33. R.F. Chen, Anal. Lett. 1: 35 (1967).

    Article  CAS  Google Scholar 

  34. D.M. Rayner, D.T. Krajcarski, and A.G. Szabo, Can. J. Chem. 56: 1238–1245 (1978).

    Article  CAS  Google Scholar 

  35. S. Pundak and R.S. Roche, Biochemistry 23: 1549–1555 (1984).

    Article  PubMed  CAS  Google Scholar 

  36. J.P. MacManus, A.G. Szabo and R.E. Williams, Biochem. J. 220: 261–268 (1984).

    PubMed  CAS  Google Scholar 

  37. T. Kimura, and J. Ting, Biochem. Biophys. Res. Commun. 45: 1227–1231 (1971).

    Article  CAS  Google Scholar 

  38. B. Lux, J. Baudier, and D. Gerard, Photochem. Photobiol. 42: 245–251 (1985).

    Article  PubMed  CAS  Google Scholar 

  39. A.G. Szabo, K.R. Lynn, D.T. Krajcarski, and D. Rayner, J. Lumin. 18: 585–585 (1979).

    Google Scholar 

  40. J.B.A. Ross, W.R. Laws, A. Buku, J.C. Sutherland, and H.R. Wyssbrod, Biochemistry 25: 607–612 (1986).

    Article  PubMed  CAS  Google Scholar 

  41. D. Creed, Photochem. Photobiol. 39: 537–562 (1984).

    Google Scholar 

  42. A.G. Szabo and D.M. Rayner, J. Am. Chem. Soc. 102: 554–563 (1980).

    Article  CAS  Google Scholar 

  43. M. Bazin, K.L. Patterson, and R. Santus, J. Phys. Chem. 87: 189–190 (1983).

    Article  CAS  Google Scholar 

  44. A. Kawski and I. Gryczynski, Bull. Acad. Polon. Sci. 21: 1061–1066 (1973).

    CAS  Google Scholar 

  45. E.M. Evleth, 0. Chabut, and P. Barriere, J. Phys. Chem. 81: 1913 (1977).

    Article  CAS  Google Scholar 

  46. S.R. Meech, D. Phillips and A.G. Lee, Chem. Phys. 80: 317–328

    Google Scholar 

  47. B. Valeur and G. Weber, Photochem. Photobiol. 25: 441–444 (1977).

    Article  PubMed  CAS  Google Scholar 

  48. P.-S. Song and W.E. Kurtin, J. Am. Chem. Soc. 91: 4892–4906 (1969).

    Article  CAS  Google Scholar 

  49. M.S. Walker, T.W. Bednar, and R. Lumry, J. Chem. Phys. 47: 1020–1028 (1967).

    Article  CAS  Google Scholar 

  50. B. Skalski, D.M. Rayner, and A.G. Szabo, Chem. Phys. Lett. 70: 587–590 (1980).

    Google Scholar 

  51. D. Jameson and G. Weber, J. Phys. Chem. 85: 953–958 (1981).

    Google Scholar 

  52. R.J. Robbins, G.R. Fleming, G.S. Beddard, G.W. Robinson, P.J. Thistlewaite, and G.J. Woolfe, J. Am. Chem. Soc. 102: 6271–6279 (1980).

    Article  CAS  Google Scholar 

  53. I. Saito, H. Sugiyama, A. Yamamoto, S. Muramatsu, and T. Matsuura, J. Am. Chem. Soc. 106: 4286–4287 (1984).

    Article  CAS  Google Scholar 

  54. E. Gudgin, R.L. Delgado, and W.R. Ware, Can. J. Chem. 59: 1037–1044 (1981).

    Article  CAS  Google Scholar 

  55. E. VanderDonckt, Bull. Soc. Chim. Belg. 78: 69–75 (1969).

    CAS  Google Scholar 

  56. A.G. Szabo, D.T. Krajcarski, P. Cavatorta, L.Masotti, and M.L. Barcellona, Photochem. Photobiol. 44: 143–150 (1986).

    Article  CAS  Google Scholar 

  57. L. Masotti, P. Cavatorta, A.G. Szabo, G. Farruggia, and G. Sartor, “Fluorescent Biomolecules”, E. Gratton and D. Jameson eds, in press (1988).

    Google Scholar 

  58. B. Alpert, D.M. Jameson, R. Lopez-Delgado, and R. Schooley, Photochem. Photobiol. 30: 479–481 (1979).

    Article  CAS  Google Scholar 

  59. A.G. Szabo in “Time Resolved Fluorescence Spectroscopy in Biochemistry and Biology”, R.B. Cundall and R.E. Dale, Plenum, New York (1983).

    Google Scholar 

  60. C.M. Hutnik and A.G. Szabo. submitted (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Szabo, A.G. (1989). The Fluorescence Properties of Aromatic Amino Acids: Their Role in the Understanding of Enzyme Structure and Dynamics. In: Cooper, A., Houben, J.L., Chien, L.C. (eds) The Enzyme Catalysis Process. Progress in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1607-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1607-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1609-2

  • Online ISBN: 978-1-4757-1607-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics