The Direct Study of Rates of Simple Proton-Transfer Reactions

  • R. P. Bell

Abstract

Everyday laboratory experience suggests that, with very few exceptions, reactions between acids and bases are extremely fast, since no time lag is observable in the dissociation of acids or bases, buffer action, hydrolysis, etc. In fact, for many purposes proton-transfer reactions involving simple acids and bases are fast enough to be treated as equilibrium processes. However, there are two reasons why the rates of these processes are of interest. In the first place modern techniques have made it possible to measure the rates of extremely fast reactions, with half-times down to about 10−9 second, and hence to obtain information about the mechanism of such reactions. In the second place, when proton-transfer reactions are coupled with other chemical processes they may lead to slow observable changes, in particular to the catalysis of reactions by acids and bases. The latter type of approach is historically the older, but it is more logical to consider first the direct observation of reactions between simple acids and bases, as will be done in this chapter. Some general features of the experimental results will be described, but detailed consideration of the relations between rates, equilibria, and structures will be deferred until Chapter 10, so as to include the information obtained less directly from studies of acid-base catalysis, described in Chapters 8 and 9.

Keywords

Velocity Constant Fast Reaction Temperature Jump Direct Study Solute Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conference on Fast Reactions, Z. Elektrochem., 64, 1–204 (1960).Google Scholar
  2. 2.
    Technique of Organic Chemistry (ed. E. L. Friess, E. S. Lewis, and A. Weissberger), Vol. VIII B (Investigation of Rates and Mechanisms of Reactions), Interscience, 1963. This volume contains articles on most of the experimental techniques.Google Scholar
  3. 3.
    K. Tamm, Handbuch de Physik,Vol. XI (1), Springer, Heidelberg, 1961, p. 202 Ultrasonic methods).Google Scholar
  4. 4.
    E. F. Caldin, Fast Reactions in Solution, Blackwell, Oxford, 1964.Google Scholar
  5. 5.
    G. Czerlinski, Chemical Relaxation, Dekker, New York, 1966.Google Scholar
  6. 6.
    Fast Reactions and Primary Processes in Reaction Kinetics (5th Nobel Symposium) (ed. S. Claesson), Interscience, 1967.Google Scholar
  7. 7.
    J. N. Hague, Fast Reactions, Wiley, New York and London, 1971.Google Scholar
  8. 8.
    M. Eigen, Angew. Chem., 75, 489 (1963); Internat. Edn., 3, 1 (1964); Pure Appl. Chem., 6, 97 (1963).Google Scholar
  9. 9.
    M. Eigen, W. Kruse, G. Maas, and L. de Maeyer, Progr. Reaction Kinetics, 2, 285 (1964).Google Scholar
  10. 10.
    E. Grunwald. Progr. Phys. Org. Chem., 3, 317 (1965).CrossRefGoogle Scholar
  11. 11.
    W J. Albery, Progr. Reaction Kinetics, 4, 353 (1966).Google Scholar
  12. 12.
    E. F. Caldin and J. E. Crooks, J. Sci. Instr., 44, 449 (1967); K. J. Ivin, J. J. McGarvey, and E. L. Simmons, Trans. Faraday Soc., 67, 97 (1971).Google Scholar
  13. 13.
    See, e.g., H. Koffer, Ber. Bunsengesell. Phys. Chem., 75, 1245 (1971).Google Scholar
  14. 14.
    R. G. Pearson, Disc. Faraday Soc., 17, 187 (1954).CrossRefGoogle Scholar
  15. 15.
    W. R. Gilkerson, J. Chem. Phys., 27, 914 (1957).CrossRefGoogle Scholar
  16. 16.
    R. P. Bell and R. R. Robinson, Trans. Faraday Soc., 58. 2358 (1962).CrossRefGoogle Scholar
  17. 17.
    K. Bergmann, M. Eigen, and L. de Maeyer, Ber. Bunsengesell. Phys. Chem., 67, 819 (1963).Google Scholar
  18. 18.
    For a general account see H. Strehlow, Ref. 2: P. Delahay, New Instrumental Methods in Electrochemistry, Interscience, New York, 1954; H. Schmidt and M. von Stackelberg, Die neuartigen polarographischen Methoden, Verlag Chemie, Weinheim, 1962.Google Scholar
  19. 19.
    R. Brdicka, Coll. Tray. Chim. Czech., 12, 213 (1947).Google Scholar
  20. 20.
    H. W. Nürnberg, Fortschr. Chem. Forsch., 8, 241 (1967).CrossRefGoogle Scholar
  21. 21.
    M. M. Kreevoy and C. A. Mead, J. Am. Chem. Soc., 84, 4596 (1962): Disc. Faraday Soc., 39, 166 (1965).Google Scholar
  22. 22.
    See, various authors, Disc. Faraday Soc., 39, 172–182 (1965).Google Scholar
  23. 23.
    For a general account, see H. Strehlow, Ref. 2, p. 865; J. A. Pople, W. G. Schneider, and H. J. Bernstein, High Resolution Nuclear Magnetic Resonance. McGraw-Hill, New York, 1959, especially Ch. 10; E. F. Caldin, Ref. 1, Ch. 11.Google Scholar
  24. See, e.g., B. G. Cox, F. G. Riddell, and D. A. R. Williams, J. Chem. Soc., B, 859 (1970); B. G. Cox, J. Chem. Soc.,B, 1780 (1970).Google Scholar
  25. 25.
    R. A. Ogg, J. Chem. Phys., 22, 560 (1954); Disc. Faraday Soc., 17, 215 (1954).Google Scholar
  26. 26.
    T. J. Swift, S. B. Marks, and W. G. Sayre, J. Chem. Phys., 44, 2796 (1966); T. J. Swift and H. H. Lo, J. Am. Chem. Soc., 88, 2994 (1966); D. R. Clutter and T. J. Swift, J. Am. Chem. Soc., 90, 601 (1960).Google Scholar
  27. 27.
    For some collected results, see A. Loewenstein and T. M. Conner, Ber. Bunsengesell. Phys. Chem., 67, 280 (1963).Google Scholar
  28. 28.
    This section follows closely the treatment given by M. Eigen, Z. Phys. Chem. (Frankfurt), 1, 176 (1954); Angew. Chem. Internat. Edn., 3, 1 (1964).Google Scholar
  29. 29.
    A. Smoluchowski, Z. Phys. Chem., 92, 129 (1917).Google Scholar
  30. 30.
    L. Onsager, J. Chem. Phys., 2, 599 (1934).CrossRefGoogle Scholar
  31. 31.
    P. Debye, Trans. Electrochem. Soc., 82, 265 (1942).CrossRefGoogle Scholar
  32. 33.
    G. Brière and F. Gaspard, J. Chim. Phys., 64, 403 (1967).Google Scholar
  33. 34.
    G. C. Barker and D. C. Sammon, Nature, 213, 65 (1967).CrossRefGoogle Scholar
  34. 35.
    M. Eigen and L. de Maeyer, Z. Elektrochem., 59, 986 (1955); G. Ertl and H. Gerischer, Z. Elektrochem., 65, 629 (1961); 66, 560 (1962).Google Scholar
  35. 36.
    a) R. P. Bell and D. M. Goodall, Proc. Roy. Soc., A, 294, 273 (1966); (b) D. M. Goodall and F. A. Long, J. Am. Chem. Soc., 90, 238 (1968); (c) R. P. Bell and D. J. Barnes, Proc. Roy. Soc., A, 318, 421 (1970); (d) M. L. Ahrens, M. Eigen, W. Kruse, and G. Maass, Ber. Bunsengesell. Phys. Chem., 74, 380 (1970).Google Scholar
  36. 37.
    H. Nürnberg, Ref. 20.Google Scholar
  37. 38.
    W. J. Albery and R. P. Bell, Proc. Chein. Soc., 169 (1963).Google Scholar
  38. 39.
    A. Hantzsch, Ber., 32, 575 (1899).Google Scholar

Copyright information

© R. P. Bell 1973

Authors and Affiliations

  • R. P. Bell
    • 1
  1. 1.University of StirlingScotland

Personalised recommendations