Skip to main content

Isotope Effects in Proton-Transfer Equilibria

  • Chapter
Book cover The Proton in Chemistry

Abstract

Since all the processes so far considered involve the transfer of a proton from one species to another, it is to be anticipated that the substitution of hydrogen by deuterium or tritium will affect both the rates and the equilibrium constants of these processes. There are in fact two reasons why isotope effects involving hydrogen will usually be much greater than those for any other elements. In the first place, the mass ratios m H : m D : m T = 1 : 2 : 3 differ greatly from unity, while the corresponding ratios for other common elements are nearly always between unity and 1.1. In the second place, the low mass of these nuclides in itself favours large isotope effects, since these are essentially quantum effects, depending upon deviations from classical mechanics, and such deviations are greatest, other factors being equal, for particles of small mass. This last point will be justified in more detail in the subsequent discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Wolfsberg, Ann. Rev. Phys. Chem., 20, 449 (1969).

    Article  Google Scholar 

  2. O. Redlich, Z. Phys. Chem., 28, B, 371 (1935).

    Google Scholar 

  3. This simplification was first introduced by H. C. Urey, J. Chem. Soc., 569 (1947), and by J. Bigeleisen and M. G. Mayer, J. Chem. Phys., 15, 261 (1947).

    Google Scholar 

  4. R. P. Bell and J. E. Crooks, J. Chem. Soc., 3513 (1962).

    Google Scholar 

  5. R. Cardinaud, Bull. Soc. Chim. France, 34 (1960).

    Google Scholar 

  6. R. H. Nuttall, D. W. A. Sharp, and T. C. Waddington, J. Chem. Soc., 4965 (1960).

    Google Scholar 

  7. M. Laughton and R. E. Robertson, in Solute-Solvent Interactions (ed. J. F. Coetzee and C. D. Ritchie ), Dekker, New York, 1969.

    Google Scholar 

  8. M. Paabo and R. G. Bates, J. Phys. Chem., 73, 3014 (1969).

    Article  Google Scholar 

  9. M. Paabo and R. G. Bates, J. Phys. Chem., 74, 706 (1970).

    Article  Google Scholar 

  10. P Salomaa, A. Vesala, and S. Vesala, Acta Chem. Scand., 23, 2107 (1969).

    Article  Google Scholar 

  11. P Salomaa, R. Hakala, S. Vesala, and T. Aalto, Acta Chem. Scand., 23, 2116 (1969).

    Article  Google Scholar 

  12. V. Gold and C. Tomlinson, J. Chem. Soc., B, 1707 (1971).

    Google Scholar 

  13. W P. Jencks and K. Salvesen, J. Am. Chem. Soc., 93, 4433 (1971).

    Article  Google Scholar 

  14. R. A. Robinson, M. Paabo, and R. G. Bates, J. Res. Nat. Bur. Stand., A, 73, 299 (1969).

    Google Scholar 

  15. See, e.g., A. K. Covington, M. Paabo, R. A. Robinson, and R. G. Bates, Analyt. Chem., 40, 700 (1968): H. Kakihana, Bull. Chem. Soc. Japan, 43, 1377 (1970).

    Google Scholar 

  16. E. Abel, E. Bratu, and O. Redlich, Z. Phys. Chem., A, 173, 353 (1935): W. F. K. Wynne-Jones, Trans. Faraday Soc., 32, 1397 (1936); G. Schwarzenbach, A. Epprecht, and H. Erlenmeyer, Heir. Chim. Acta, 19, 1292 (1936).

    Google Scholar 

  17. V. Gold and B. M. Lowe, Proc. Chem. Soc., 140 (1963); J. Chem. Soc., A, 936 (1967); A. K. Covington, R. A. Robinson, and R. G. Bates, J. Phys. Chem., 70, 3820 (1966): L. Pentz and E. R. Thornton, J. Am. Chem. Soc., 89, 6931 (1967).

    Google Scholar 

  18. P. Salomaa, Acta Chem. Scand., 25, 367 (1971).

    Article  Google Scholar 

  19. M Goldblatt and W. M. Jones, J. Chem. Phys., 51. 1881 (1969).

    Article  Google Scholar 

  20. G. E. Walrafen, J. Chem. Phys., 36, 1035 (1962): 40, 3249 (1964); 44, 1546 (1966); 47, 114 (1967); 48, 244 (1968).

    Google Scholar 

  21. L. H. Jones, J. Chem. Phys., 22, 217 (1954).

    Article  Google Scholar 

  22. M. Falk and P. A. Giguère, Canad. J. Chem., 35, 1195 (1957); 36, 1680 (1958).

    Article  Google Scholar 

  23. J. Rudolph and H. Zimmermann, Z. Phys. Chem. (Frankfurt), 43, 311 (1964).

    Google Scholar 

  24. W. P. Jencks and K. Salvesen, J. Am. Chem. Soc., 93, 4433 (1971).

    Article  Google Scholar 

  25. C. A. Bunton and V. J. Shiner, J. Am. Chem. Soc., 83, 42, 3207, 3214 (1961).

    Article  Google Scholar 

  26. C. G. Swain and R. F. W. Bader, Tetrahedron, 10, 182, 200 (1960).

    Article  Google Scholar 

  27. R. A. More O’Ferrall, G. W. Koeppl, and A. J. Kresge, J. Am. Chem. Soc., 93, 1 (1971).

    Article  Google Scholar 

  28. C. K. Rule and V. K. LaMer, J. Am. Chem. Soc., 60, 1974 (1938).

    Article  Google Scholar 

  29. R. P. Bell and A. T. Kuhn, Trans. Faraday Soc., 59, 1789 (1963).

    Article  Google Scholar 

  30. R. P. Bell, The Proton in Chemistry, Methuen, London, 1959.

    Google Scholar 

  31. W. Gordy and S. C. Stanford, J. Chem. Phys., 9, 204 (1941).

    Article  Google Scholar 

  32. R. P. Bell and W. B. T. Miller, Trans. Faraday Soc., 59, 1147 (1963).

    Article  Google Scholar 

  33. A. Streitwieser and H. S. Klein, J. Am. Chem. Soc., 85, 2759 (1963).

    Article  Google Scholar 

  34. W. Vàn der Linde and R. E. Robertson, J. Am. Chem. Soc., 86, 4504 (1964).

    Article  Google Scholar 

  35. D. Northcott and R. E. Robertson, J. Phys. Chem., 73, 1559 (1969).

    Article  Google Scholar 

  36. R. P. Bell and J. E. Crooks, Trans. Faraday Soc., 58, 1409 (1962).

    Article  Google Scholar 

  37. For example, E. A. Halevi, Tetrahedron, 1, 74 (1957).

    Article  Google Scholar 

  38. R. E. Weston, Tetrahedron, 6, 31 (1959).

    Article  Google Scholar 

  39. V. W. Laurie and D. R. Herschbach, J. Chem. Phys., 37, 1687 (1962).

    Article  Google Scholar 

  40. J. S. Muenter, M. Kaufman, and W. Klemperer, J. Chem. Phys., 48, 3338 (1968).

    Article  Google Scholar 

  41. J. S. Muenter and V. W. Laurie, J. Chem. Phys., 45, 855 (1966).

    Article  Google Scholar 

  42. E. R. Thornton, Ann. Rev. Phys. Chem., 17, 354 (1966).

    Article  Google Scholar 

  43. P. Gross and A. Wischin, Trans. Faraday Soc., 32, 879 (1936); P. Gross, H. Steiner, and H. Suess, Trans Faraday Society., 32, 883 (1936); P. Gross, Z. Elektrochem., 44, 299 (1938).

    Google Scholar 

  44. J. C. Horwel and J. A. V. Butler, J. Chem. Soc., 1361 (1936); W. J. C. Orr and J. A. V. Butler, J. Chem. Soc., 330 (1937); W. E. Nelson and J. A. V. Butler, J. Chem. Soc., 958 (1938).

    Google Scholar 

  45. E. L. Purlee, J. Am. Chem. Soc., 81, 263 (1959).

    Article  Google Scholar 

  46. V. Gold, Adv. Phys. Org. Chem., 7, 259 (1969).

    Article  Google Scholar 

  47. J. Bigeleisen, J. Chem. Phys., 23, 2264 (1955).

    Article  Google Scholar 

  48. V. Gold, Proc. Chem. Soc., 141 (1963); A. J. Kresge and A. L. Allred, J. Am. Chem. Soc., 85, 1541 (1963); V. Gold and M. A. Kessick, Disc. Faraday Soc., 39, 84 (1965).

    Google Scholar 

  49. K. Heinzinger and R. E. Weston, J. Phys. Chem., 68, 744, 2179 (1965); K. Heinzinger, Z. Naturforsch., 20a, 269 (1965).

    Google Scholar 

  50. P. Salomaa and V. Aalto, Acta Chem. Scand., 20, 2035 (1966).

    Article  Google Scholar 

  51. J. I. G. Cadogan, V. Gold, and D. P. N. Satchell, J. Chem. Soc., 561 (1955); A. J. Kresge, Pure Appl. Chem., 8, 243 (1964).

    Google Scholar 

  52. V. Gold and B. M. Lowe, J. Chem. Soc., A, 1923 (1968).

    Google Scholar 

  53. W J. C. Orr and J. A. V. Butler, J. Chem. Soc., 330 (1937).

    Google Scholar 

  54. P. Salomaa, L. L. Schaleger, and F. A. Long, J. Am. Chem. Soc., 86, 1 (1964).

    Article  Google Scholar 

  55. P. Salomaa, L. L. Schaleger, and F. A. Long, J. Phys. Chem., 68, 410 (1964).

    Article  Google Scholar 

  56. A. J. Kresge, Pure Appl. Chem., 8, 243 (1964).

    Article  Google Scholar 

  57. P. Salomaa and A. Vesala, Acta Chem. Scand., 20, 1414 (1966).

    Article  Google Scholar 

  58. K. Heinzinger and R. E. Weston, J. Phys. Chem., 68, 2179 (1964).

    Article  Google Scholar 

  59. A. K. Kresge and A. L. Allred, J. Am. Chem. Soc., 85, 1541 (1963).

    Article  Google Scholar 

  60. V. Gold, Proc. Chem. Soc., 141 (1963).

    Google Scholar 

  61. V. Gold and S. Grist, J. Chem. Soc., Perk. Trans. II, 89 (1972).

    Google Scholar 

  62. M. Wolfsberg, J. Chem. Phys., 50, 1484 (1969).

    Article  Google Scholar 

  63. L. Friedman and V. J. Shiner, J. Chem. Phys., 44, 4639 (1966).

    Article  Google Scholar 

  64. J. W. Pyper, R. S. Newbury, and G. W. Barton, J. Chem. Phys., 46, 2253 (1967).

    Article  Google Scholar 

  65. V. Gold, Trans. Faraday Soc., 64, 2770 (1968).

    Article  Google Scholar 

  66. W. J. Albery and M. H. Davies, Trans. Faraday Soc., 65, 1059 (1969).

    Article  Google Scholar 

  67. V. K. LaMer and E. Noonan, J. Am. Chem. Soc., 61, 1487 (1939); E. Noonan and V. K. LaMer, J. Phys. Chem., 43, 247 (1939).

    Google Scholar 

  68. E. M. Arnett and D. R. McKelvey, in Solute-Solvent Interactions (ed. J. F. Coetzee and C. D. Ritchie ), Dekker, New York and London, 1969.

    Google Scholar 

  69. C. V. Krishnan, J. Phys. Chem., 74, 2356 (1970).

    Article  Google Scholar 

  70. P. Salomaa, Acta Chem. Scand., 25, 365 (1971).

    Article  Google Scholar 

  71. D. B. Dahlberg, J. Phys. Chem., 76, 2045 (1972).

    Article  Google Scholar 

  72. P. Salomaa, Suomen Kern., B, 45, 149 (1972).

    Google Scholar 

  73. P. Salomaa, A. Vesala, and S. Vesala, Acta Chem. Scand., 23, 2107 (1969).

    Article  Google Scholar 

  74. M. Falk and P. A. Giguère, Canad. J. Chem., 36, 1121 (1958).

    Article  Google Scholar 

  75. E. A. Walters and F. A. Long, J. Phys. Chem., 76, 362- (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 R. P. Bell

About this chapter

Cite this chapter

Bell, R.P. (1973). Isotope Effects in Proton-Transfer Equilibria. In: The Proton in Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1592-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1592-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1594-1

  • Online ISBN: 978-1-4757-1592-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics