Structure-Function Relations for Cell Surface Receptors and Adenylate Cyclase: Studies Using Target Size Analysis of Radiation Inactivation

  • Werner Schlegel
Part of the NATO ASI Series book series (NSSA, volume 72)


Understanding the functioning of a cell surface receptor is possible only with knowledge about its structure. A priori receptors are likely to be complex since many functions have to be accomodated. A receptor recognizes a particular substance or class of substances with great precision in a sea of similar substances, binds it, generates a signal by triggering contacting enzyme systems or by regulation of ion channels, terminates the signal, and is subjected to various modulations by “nonspecific” ligands like GTP, ions, and phospholipids, or by the specific ligands, i. e. in the instance of desensitization. In a first approach to structural analysis the question is asked what structure is responsible for a particular partial function of the receptor. Several methods have been applied to the study of structurefunction relationships of cell surface receptors:


Insulin Receptor Adenylate Cyclase Cell Surface Receptor Primary Ionization Target Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Citri and M. Schramm, Resolution, reconstitution and kinetics of the primary action of a hormone receptor, Nature 287: 297 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Orly and M. Schramm, Coupling of catecholamine receptor from one cell with adenylate cyclase from another cell by cell fusion, Proc. Nat. Acad. Sci. 73: 4410 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    H. R. Bourne, P. Coffino, and G.M. Tomkins, Selection of a variant lymphoma cell deficient in adenylate cyclase, Science 187: 750 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    P. C. Sternweis, J. K. Northup, M. D. Smigel, and A. G. Gilman, The regulatory component of adenylate cyclase. Purification and properties, J. Biol. Chem. 256: 11517 (1961).Google Scholar
  5. 5.
    E. Hanski, P. C. Sternweis, J. K. Northup, A. W. Dromerick, and A. G. Gilman, The regulatory component of adenylate cyclase. Purification and properties of the turkey erythrocyte protein, J. Biol. Chem. 256: 12911 (1981).PubMedGoogle Scholar
  6. 6.
    D. E. Lea, Actions of radiation on living cells, Cambridge University Press, London (1955).Google Scholar
  7. 7.
    G. R. Kepner and R. I. Macey, Membrane enzyme systems. Molecular size determinations by radiation inactivation, Biochim. Biophys. Acta 163: 188 (1968).CrossRefGoogle Scholar
  8. 8.
    E. S. Kempner and W. Schlegel, Size determination of enzymes by radiation inactivation, Anal. Biochem. 92: 2 (1979).Google Scholar
  9. 9.
    W. Schlegel, E. S. Kempner, and M. Rodbell, Activation of adenylate cyclase in hepatic membranes involves interactions of the catalytic unit with multimeric complexes of regulatory proteins, J. Biol. Chem. 254: 5168 (1979).Google Scholar
  10. 10.
    E. S. Kempner and H. T. Haigler, The influence of low temperature on the radiation sensitivity of enzymes, J. Biol. Chem., in press (1983).Google Scholar
  11. 11.
    E. S. Kempner, J. H. Miller, W. Schlegel, and J. Z. Hearon, The functional unit of polyenzymes. Determination by radiation inactivation, J. Biol.. Chem. 255: 6826 (1980).PubMedGoogle Scholar
  12. 12.
    M. E. Lowe and E. S. Kempner, Radiation inactivation of the glycoprotein, invertase, J. Biol. Chem., in press (1982).Google Scholar
  13. 13.
    D. Parkinson and B. A. Callingham, Irradiation inactivation analysis of acetylcholinesterase and the effect of buffer salts, Rad. Res. 90: 252 (1982).Google Scholar
  14. 14.
    R. L. Kincaid, E. Kempner, V. C. Manganiello, J. C. Osborne Jr.,and M. Vaughan, Calmodulin-activated cyclic nucleotide phosphodiesterase from brain. Relationship of subunit structure to activity assessed by radiation inactivation, J. Biol. Chem. 256 (21): 11351 (1981).PubMedGoogle Scholar
  15. 15.
    P. Simon, S. Swillens, and J. E. Dumont, Size determination of an equilibrium enzymic system by radiation inactivation, theoretical considerations, Biochem. J. 205: 477 (1982).PubMedGoogle Scholar
  16. 16.
    M. P. Czech, J. Massague, and P. F. Pilch, The insulin receptor: structural features, TIBS 68: 222 (1981).Google Scholar
  17. 17.
    J. T. Harmon, C. R. Kahn, E. S. Kempner, and W. Schlegel, Characterization of the insulin receptor in its membrane environment by radiation inactivation, J. Biol. Chem. 255: 3412 (1980)PubMedGoogle Scholar
  18. 18.
    J. T. Harmon, E. S. Kempner, and C. R. Kahn, Demonstration by radiation inactivation that insulin alters the structure of the insulin receptor in rat liver membranes, J. Biol. Chem. 256: 7719 (1981).PubMedGoogle Scholar
  19. 19.
    R. J. Pollet, E. S. Kempner, M. L. Standaert, and B. A. Haase, Structure of the insulin receptor of the cultured human lymphoblastoid cell IM-9, evidence suggesting that two subunits are required for insulin binding, J. Biol. Chem. 257: 894 (1982).Google Scholar
  20. 20.
    J. T. Harmon and J. A. Hedo, Characterization of the chemical and functional nature of a membrane regulator of insulin receptor affinity, 63rd meeting endocrine society (Cincinatti), abstract No 259: 147 (1981).Google Scholar
  21. 21.
    R. E. Corin and D. B. Donner, Insulin receptors convert to a higher affinity state subsequent to hormone binding, a two-state model for the insulin receptor, J. Biol. Chem. 257: 104 (1982).PubMedGoogle Scholar
  22. 22.
    D. B. Donner and R.E. Corin, Formation of a receptor state from which insulin dissociates slowly in hepatic cells and plasma membranes, J. Biol. Chem. 255: 9005 (1980).PubMedGoogle Scholar
  23. 23.
    R. J. Pellet, M. L. Standaert, and B.A. Haase, Insulin binding to the human lymphocyte receptor, evaluation of the negative cooperativity model, J. Biol. Chem. 252: 5828, (1977).Google Scholar
  24. 24.
    M. Rodbell, The role of hormone receptors and GTPregulatory proteins in membrane transduction, Nature 284: 17 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    A. M. Spiegel and R. W. Downs, Jr, Guanine nucleotides: key regulators of hormone receptor-adenylate cyclase interaction, Endocrine Reviews 2: 275 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    Th. Pfeuffer, Guanine nucleotide-controlled interactions between components of adenylate cyclase, FEBS Letts 101: 85 (1979).CrossRefGoogle Scholar
  27. 27.
    S. Strittmatter and E. J. Neer, Properties of the separated catalytic and regulatory units of brain adenylate cyclase, Proc. Natl. Acad. Sci. 77: 6344 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    D. Stengel and J. Hanoune, The catalytic unit of ram sperm adenylate cyclase can be activated through the guanine nucleotide regulatory component and prostaglandin receptors of human erythrocyte, J. Biol. Chem. 256: 5394 (1981).PubMedGoogle Scholar
  29. 29.
    E. M. Ross, A. C. Howlett, K. M. Ferguson, and A. G. Gilman, Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme, J. Biol. Chem. 253: 6401 (1978).PubMedGoogle Scholar
  30. 30.
    D. Stengel, L. Guenet, and J. Hanoune, Proteolytic solubilization of adenylate cyclase from membranes deficient in regulatory component, J. Biol. Chem. 257: 10818 (1982).PubMedGoogle Scholar
  31. 31.
    T. B. Nielsen, P. M. Lad, M. S. Preston, E. Kempner, W. Schlegel, and M. Rodbell, Structure of the turkey erythrocyte adenylate cyclase system, Proc. Natl. Acad. Sci. 78: 722 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    R. B. Martin, J. M. Stein, E. L. Kennedy, C. A. Doberska, and J. C. Metcalfe, Transient complexes, a new structural model for the activation of adenylate cyclase by hormone receptors (guanine nucleotides/irradiation inactivation), Biochem. J. 184: 253 (1979).PubMedGoogle Scholar
  33. 33.
    W. Schlegel, D. M. F. Cooper, and M. Rodbell, Inhibition and activation of fat cell adenylate cyclase by GTP is mediated by structures of different size, Arch. Biochem. Biophys. 201: 678 (1980).CrossRefGoogle Scholar
  34. 34.
    G. L. Johnson, V. I. MacAndrew Jr, and P. F. Pilch, Identification of the glucagon receptor in rat liver membranes by photoaffinity crosslinking, Proc. Natl. Acad. Sci. 78: 875 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    D. Atlas and A. Levitzki, Tentative identification of 6-adreno-receptor subunits, Nature 272: 370 (1978).PubMedCrossRefGoogle Scholar
  36. 36.
    A. D. Strosberg, G. Vauquelin, 0. Durieu-Trautmann, C. Delavier-Klutchko, S. Bottari, and C. André, Towards the chemical and functional characterization of the 5-adrenergic receptor, TIBS 5: 11 (1980).Google Scholar
  37. 37.
    T. L. Innerarity, E. S. Kempner, D. Y. Hui, and R. W. Mahley, Functional unit of the low density lipoprotein receptor of fibroblasts: a 100,000dalton structure with multiple binding sites, Proc. Natl. Acad. Sci. 78: 4378 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    C. J. Steer, E. S. Kempner, and G. Ashwell, Molecular size of the hepatic receptor for asialoglycoproteins determined in situ by radiation inactivation, J. Biol. Chem. 256: 5851 (1981).PubMedGoogle Scholar
  39. 39.
    C. Fewtrell, E. Kempner, G. Poy, and H. Metzger, Unexpected findings from target analysis of immunoglobulin E and its receptor, Biochemistry 20: 6589 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Doble and L. L. Iversen, Molecular size of benzodiazepine receptor in rat brain in situ: evidence for a functional dimer, Nature 295: 522 (1982).PubMedCrossRefGoogle Scholar
  41. 41.
    S. M. Paul, E. S. Kempner,and P. Skolnick, In situ molecular-weight determination of brain and peripheral benzodiazepine binding sites, Eur. J. Pharmacol. 76:465 (1982).Google Scholar
  42. 42.
    L. R. Chang, E. A. Barnard, M. M. S. Lo, and J. O. Dolly, Molecular sizes of benzodiazepine receptors and the interacting GABA receptors in the membrane are identical, FEBS letts 126: 309 (1981).CrossRefGoogle Scholar
  43. 43.
    M. M. S. Lo, E. A. Barnard, and J. O. Dolly, Size of acetylcholine receptors in the membrane, an improved version of the radiation inactivation method, Biochemistry 21: 2210 (1982).PubMedCrossRefGoogle Scholar
  44. 44.
    S. Uchida, K. Matsumoto, K. Takeyasu, H. Higuchi, and H. Yoshida, Molecular mechanism of the effects of guanine nucleotide and sulfhydryl reagent on muscarinic receptors in smooth muscles studied by radiation inactivation, Life Sci. 31: 201 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Werner Schlegel
    • 1
  1. 1.Fondation pour recherches medicales Dept. of MedicineUniversity of GenevaGeneva 4Switzerland

Personalised recommendations