Plasma Physics pp 262-283 | Cite as

Theory of Magnetic-Field Turbulence in Disk Plasmas and Its Application to the Galaxy and Accretion Model of Compact X-Ray Binaries

  • Setsuo Ichimaru
Part of the Nobel Symposium Committee (1976) book series (NOFS, volume 36)


It has been recognized that the differential rotation and radial flow of plasmas in a disk geometry act to generate and amplify the magnetic-field fluctuations in it. The presence of such a magneto-hydrodynamic turbulence plays an essential part in the physical processes involved in various astrophysical objects, such as the Galaxy and the accretion model of compact X-ray sources (Prendergast and Burbidge 1968, Shakura and Sunyaev 1973, Eardley and Lightman 1975, and many others). In the former case the theory should be relevant directly to the question on the origin of the Galactic magnetic field; the spectral distribution of magnetic-field fluctuations may then be correlated with the observational data such as the energy dependence of the anisotropy and the total path length of the cosmic rays. In the latter case the flux of angular momentum carried away by the stress tensor of the magnetic field enables the matter to flow toward the accreting star ; the static and dynamic properties of such an accretion disk are vitally controlled by the rate of such an angular-momentum transfer in the plasma. In the cakes of accretion onto a magnetic neutron star, the disk’s inner boundary is determined by the pressure balance between the stellar magnetic field and the accreting plasma (the Alfvén. surface). The eventual fall of the plasma onto the stellar surface must he accounted for in terms of the theory of plasma diffusion across the Alfvén surface; the basic processes involved are the anomalous electric resistivity in the boundary domain caused by the presence of magnetic-field fluctuations in the disk (Ichimaru, to be published).


Black Hole Accretion Disk Differential Rotation Compact Star Magnetic Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, P. C., Gokhale, G. S., Iyoo8ur^ Y. S., Kunte, P. K., Manchanda, R. K., and Sreekantan, B. V. 1972, Ap. and Space Soi., 18, 408.ADSCrossRefGoogle Scholar
  2. Allen, C. W. l07S, Astorphysical Quantities 3rd ed. (Athlone Press, London), Sec. 134’Google Scholar
  3. Baity, W. A., Ulmer, M. P., Wheaton, W. A., and Peterson, L. E. 1973, Nature Pbys, Sci’, 245, 90.ADSCrossRefGoogle Scholar
  4. Bolton, C. T. 1975, Ap. J., 200,-269.Google Scholar
  5. Eardley, B. M., Lightman, A. P. 1975, Ap. J., 200 ^ 189.Google Scholar
  6. Eardley, D. M., Lightman, A. P., and Shapiro, S. L. 1975, Ap. J. (Letters), 199 L153’Google Scholar
  7. Gombosi, T., Kota, ~ J., Somogyi, A. J., Varga, A., Betev, B.Google Scholar
  8. Katsucsky L., Kavlukov, S., and Khirov, 7. 1975, Nature, 255Google Scholar
  9. Heise, J., Brinkman, A. C., Schrijver, J., Mewe, 8., den Boggende, A., Gronenschild, E., Parsignault, D., Crïnülxy, J., SchnopperGoogle Scholar
  10. O,, Schreier, E., and Gursky, H. 1975, Nature, 256 107. Heisenberg, W. 1048, Z. Physik, 124 628.Google Scholar
  11. Holt, S. S.’ Boldt, S. A.’ Kaluzienski, L. J,, and Serlemitsos, P. J. 1975, Nature, 256, 108.Google Scholar
  12. Ichimaru, S. 1975o` J. Phys. S.c. Japan, 39, 1373.Google Scholar
  13. Ickimuru, G. 1975b, Ap. J., 202, 528.ADSCrossRefGoogle Scholar
  14. Jokipii, J. K. 1968^ Ap. J., 997.Google Scholar
  15. Kolmogorov, A. N. 1941, Compt. Rend. Acad. Sci. USSR, 30, 301.Google Scholar
  16. Kompaneets, A. S. 1956` Zh. Eksp. Teor. Fiz., 31^ 876 (English truosI. in Soviet Phys. JETP, 4, 750 [l9-.’Google Scholar
  17. Morrison, P. 1961, Handbuch der Phys. 4611 l’Google Scholar
  18. Nakano, T. 1972 Ann. Phys. (N. Y. ), 73, 326’Google Scholar
  19. Novikov, I. D., and Thorne, K. S. 1973, in Bzuck 8oIes, *d. C. DeWitt and B. DeWitt ( New York: Gordon Breach).Google Scholar
  20. Oda, M., Gorenstein, P., Gursky, H., Kellogg, E., Schreier, E., Tananbaum, K.^ and Giacconi, R. 1971 Ap. J. (Letters). 166, Ll.Google Scholar
  21. Prendergast, K. H. and Burbidge, G. R. 1968` Ap. J. (Letters), 151 ^ L83.Google Scholar
  22. Pringle, J. E., Rees, M. J,, and Pacholczyk, A. G. 1073 andxtr, and Ap., 29, 179’Google Scholar
  23. Ramaty, R., Balasubrahmanyan, V. K., and Ormes, J. F. 1973 Science, 180, 731.ADSCrossRefGoogle Scholar
  24. Rappaport, S., Doxsey, R., and Zauman, H. 1971. Ap. J. (Letter, 168, L43.ADSCrossRefGoogle Scholar
  25. Dotbs:bild, R. E., Boldt, E. A., Holt, S. S., and Serlemitsos, P. J. 1974° Ap. J. (Letters), 189 L13’Google Scholar
  26. Sanford, P. W.` Ives, J. C., Bell Burnell, S. J., Mason, K. O., and Murdin, P. 1975’ Nature, 256, 109.Google Scholar
  27. Schrier, E., Gursky, 8’, Kellogg, E’ Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 170 [2l.Google Scholar
  28. Shakura, N. I. and Sunyaev, R. A. 1973, Astr. and Ap., 24, 337. Somogyi, A. J. 1976, Nature, 255, 689Google Scholar
  29. Spitzer, L.. Jr. 1962 Physics of Fully Ionized -(New York: Wiley).Google Scholar
  30. Tajima, T., Ichimaru, S., and Nakano, T. 1974, J. Plasma Phys., 12, 381.ADSCrossRefGoogle Scholar
  31. Tananbaum, H., Gursky, H., Kellogg, E., Giacconi, K.° 1972, Ap. J. (Letters), 177 L5.Google Scholar
  32. Thorne, K. S. and Price, R. H. 1975, Ap. J. (Letters) Weisskopf, M. C., Kahn, S. M., and Sutherland, P. G. (Letters), 199, L147.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Setsuo Ichimaru
    • 1
  1. 1.Department of PhysicsUniversity of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations