Skip to main content

Final States in Charmed Particle Decays

  • Chapter
Deeper Pathways in High-Energy Physics

Part of the book series: Studies in the Natural Sciences ((SNS,volume 12))

Abstract

It is shown how weak decays of charmed particles provide information on the isospin of the charm-changing weak interactions, multi-particle production, enhancement of nonleptonic weak interactions, unseen decay modes of known charmed particles and best ways in which to discover new ones, and possible new weak currents and new fermions.

Work supported in part by ERDA under Contracts No. E(11-1)-1764 and E(11-1)-2220. On leave during 1976–7 from School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.J. Aubert et al., Phys. Rev. Letters 33, 1404 (1974).

    Article  Google Scholar 

  2. J.-E. Augustin et al., Phys. Rev. Letters 33, 1406 (1974).

    Article  Google Scholar 

  3. S.L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).

    Google Scholar 

  4. The hadronic weak currents of Ref. 3 were first proposed by M. Gell-Mann and S.L. Glashow, 1961 (unpublished)

    Google Scholar 

  5. M. Gell-Mann, Phys. Letters 8, 214 (1964)

    Article  Google Scholar 

  6. Z. Maki and Y. Ohnuki, Prog. Theor. Phys. 32, 144 (1964)

    Article  Google Scholar 

  7. Y. Hara, Phys. Rev. 134, B701 (1964)

    Article  Google Scholar 

  8. B.J. BjqSrken and S.L. Glashow, Phys. Letters 11, 255 (1964), in which “charm” is named.

    Google Scholar 

  9. General quartet schemes for hadrons have been considered by the authors of Refs. 3, 4, as well as by Y. Katayama et al., Prog. Theor. Phys. 28, 675 (1962)

    Google Scholar 

  10. P. Tarjanne and V.L. Teplitz, Phys. Rev. Letters 11, 447 (1963)

    Article  Google Scholar 

  11. Z. Maki, Prog. Theor. Phys. 31, 331–333 (1964)

    Google Scholar 

  12. D. Amati, H. Bacry, J. Nuyts, and J. Prentki, Phys. Letters 11, 190 (1964).

    Article  Google Scholar 

  13. G. Goldhaber, F.M. Pierre, et al., Phys. Rev. Letters 37, 255 (1976).

    Article  Google Scholar 

  14. I. Peruzzi, M. Piccolo, G.J. Feldman, H.K. Nguyen, J.E. Wiss, et al., Phys. Rev. Letters 37, 569 (1976).

    Article  Google Scholar 

  15. G. Goldhaber, “Study of Charmed Mesons at SPEAR”, Lawrence Berkeley Laboratory report LBL-5534, presented at 1976 SLAC Summer Institute on Particle Physics.

    Google Scholar 

  16. R. Schwitters, in Proceedings of Division of Particles and Fields American Physical Society Divisional Meeting, Brookhaven National Laboratory, October, 1976, edited by Ronald F. Peierls, Brookhaven Natl. Lab. report BNL-50598, February, 1977.

    Google Scholar 

  17. J.E. Wiss, G. Goldhaber, et al., Phys. Rev. Letters 37, 1531 (1976).

    Article  Google Scholar 

  18. A description of tests for weak decays of heavy mesons is given by Benjamin W. Lee, C. Quigg, and Jonathan L. Rosner, Comments in Nuclear and Particle Physics, to be published. The most conclusive of these tests makes use of the Dalitz-plot analysis of Charles Zemach, Phys. Rev. 133, B1201 (1964), and has been used in Ref. 10 to infer that the D is decaying weakly.

    Google Scholar 

  19. S.L. Glashow, in Experimental Meson Spectroscopy -1974, edited by D.A. Garelick, American Institute of Physics, New York, 1974, p. 387.

    Google Scholar 

  20. Mary K. Gaillard, Benjamin W. Lee, and Jonathan L. Rosner, Rev. Mod. Phys. 47, 277 (1975).

    Article  Google Scholar 

  21. A. De Rujula, Howard Georgi, and S.L. Glashow, Phys. Rev. D12, 147 (1975).

    Article  Google Scholar 

  22. O. Nachtmann and A. Pais, Phys. Letters 65B, 59 (1976).

    Google Scholar 

  23. Murray Peshkin and Jonathan L. Rosner, “Isospin Restrictions on Charge Distributions in Charmed Particle Decays,” Institute for Advanced Study report C00–2220–93, December, 1976, to be published in Nuclear Physics B.

    Google Scholar 

  24. A. Pais and S.B. Treiman, “Charmed Meson Lifetime Ratios and Production in e+ -e Collisions, ”Rockefeller University report no. C00–2232B-112, to be published in Phys. Rev. D.

    Google Scholar 

  25. E. Fermi, Phys. Rev. 92, 452 (1953); 93, 1434 (E) (1954).

    Google Scholar 

  26. A. Pais, Ann. Phys. (N.Y.) 9, 548 (1960), Ibid., 22, 274 (1963).

    Article  Google Scholar 

  27. F. Cerulus, Nuovo Cimento (Suppl.) 15, 402 (1960).

    Article  Google Scholar 

  28. A. Pais, Phys. Rev. Letters 32, 1081 (1974).

    Article  Google Scholar 

  29. Benjamin W. Lee, C. Quigg, and Jonathan L. Rosner, to be published in Phys. Rev. D15 (1977).

    Google Scholar 

  30. E. Fermi, Prog. Theor. Phys. 5, 570 (1950).

    Google Scholar 

  31. Some early work in this area is reviewed by A. Jabs, Nucl. Phys. B34, 177 (1971)

    Google Scholar 

  32. D.Q. Lamb, in Proceedings of the Colloquium on High Multiplicity Hadronic Interactions, Ecole Polytechnique, 1970, edited by A. Krzywicki et al., p. IV. 89.

    Google Scholar 

  33. R. Hagedorn, Nuovo Cimento (Suppl.) 3, 147 (1965)

    Google Scholar 

  34. S.C. Frautschi, Phys. Rev. D3, 2821 (1971)

    Google Scholar 

  35. C.J. Hamer and S.C. Frautschi, Phys. Rev. D4, 2125 (1971).

    Google Scholar 

  36. C.J. Hamer, Nuovo Cimento 12A, 162 (1972).

    Google Scholar 

  37. S.J. Orfanidis and V. Rittenberg, Nucl. Phys. B59, 570 (1973).

    Article  Google Scholar 

  38. B. Jean-Marie et al., Phys. Rev. Letters 36, 291 (1976).

    Article  Google Scholar 

  39. Gary J. Feldman and Martin L. Perl, Phys. Letters 19C, 233 (1975).

    Google Scholar 

  40. G. Altarelli, N. Cabibbo, and L. Maiani, Nucl. Phys. B88, 285 (1975); Phys. Letters 57B, 277 (1975).

    Google Scholar 

  41. R.L. Kingsley, S.B. Treiman, F. Wilczek, and A. Zee, Phys. Rev. Dll, 1919 (1975).

    Google Scholar 

  42. M.B. Einhorn and C. Quigg, Phys. Rev. D12, 2015 (1975); Phys. Rev. Letters 35, 1114 (C) (1975).

    Google Scholar 

  43. J. Ellis, M.K. Gaillard, and D.V. Nanopoulos, Nucl. Phys. B100, 313 (1975).

    Article  Google Scholar 

  44. K. Niu, E. Mikumo, and Y. Maeda, Prog. Theor. Phys. 46, 1644 (1971).

    Article  Google Scholar 

  45. H. Sugimoto, Y. Sato, and T. Saito, Prog. Theor. Phys. 53, 1541(L) (1975), and In Proceedings of the 14th International Cosmic Ray Conference, Munich, Aug. 15–29, 1975, Max-Planck-Institut, 1975, paper no. HE5–6, p. 2427.

    Google Scholar 

  46. E.H.S. Burhop et al., Phys. Letters 65B, 299 (1976).

    Google Scholar 

  47. Early emulsion events, including those of Refs. 34 and 35, are discussed by K. Hoshino et al., in Proceedings of the 1975 Cosmic Ray Conference (op. cit. Ref. 35) papers no. HE 5–11, p. 2442, and HE 5–12, p. 2448, and by G.B. Yodh, in Proceedings of the 1975 Cosmic Ray Conference (op. cit. Ref. 35), P. 3936. The importance of asso- ciated production in reducing background from nuclear interactions is stressed by Yodh and in Ref. 38.

    Google Scholar 

  48. T.K. Gaisser and F. Halzen, Phys. Rev. D14, 3153 (1976).

    Google Scholar 

  49. E.G. Cazzoli et al., Phys. Rev. Letters 34, 1125 (1975).

    Article  Google Scholar 

  50. B. Knapp et al., Phys. Rev. Letters 37, 882 (1976).

    Article  Google Scholar 

  51. B. Knapp, in 1976 DPF Proceedings (op. cit. Ref. 9 ).

    Google Scholar 

  52. S.J. Barish et al., to be published in Phys. Rev. D15 (1977).

    Google Scholar 

  53. A. De Rujula, Howard Georgi, and S.L. Glashow, Phys. Rev. Letters 37, 398, 785 (C) (1976).

    Article  Google Scholar 

  54. A.W. Hendry and D.B. Lichtenberg, Phys. Rev. D12, 2756 (1975).

    Google Scholar 

  55. Frederick J. Gilman, these proceedings, and in 1976 DPF Proceedings (op. cit. Ref. 9 ).

    Google Scholar 

  56. Frederick J. Gilman, in High Energy Physics and Nuclear Structure - 1975 (AIP Conference Proceedings No. 26 ), edited by D.E. Nagle et al., New York, American Institute of Physics, 1975, p. 331.

    Chapter  Google Scholar 

  57. F. Vannucci et al., “Mesonic Decays of the 4)(3095),” SLAC and LBL report SLAC-PUB-1862, LBL5595, December, 1976, submitted to Phys. Rev.

    Google Scholar 

  58. M. Peshkin, Phys. Rev. 121, 636 (1961).

    Article  Google Scholar 

  59. I thank S. Nussinov for proofs of some special cases.

    Google Scholar 

  60. I thank A. Pais for a discussion of this point.

    Google Scholar 

  61. Using data quoted in Ref. 27 on up to 7-prong annihilations, I have checked that the sum of all pionic annihilations constructed with the help of tables of Ref. 19 is only about 2/3 of the actual total.

    Google Scholar 

  62. Gail Hanson et al., Phys. Rev. Letters 35, 1609 (1975).

    Article  Google Scholar 

  63. This possibility has been raised in Ref. 54 for decays of hadrons containing heavier quarks.

    Google Scholar 

  64. Robert N. Cahn and Stephen D. Ellis, “How to Look for b-Quarks”, Univ. of Michigan report 76.45, January, 1977 (unpublished).

    Google Scholar 

  65. Benjamin W. Lee, C. Quigg, and Jonathan L. Rosner, unpublished.

    Google Scholar 

  66. I thank C. Quigg for pointing out that Eq. (IV.5) entails P-(n) = c2n-1/[n:(n+l)!I1(2c)], where I1 is a modified Bessel function, and n = c I2(2c) /I1(2c) = c - 3/4 + 3/(32c) + 0(1/c2).

    Google Scholar 

  67. I thank D. Horn for a discussion of more general parametrizations, including the Gaussian distribution. A Gaussian would be suitable for describing the distribution if its center and width were fixed by the data. With present uncertainties in branching ratios (see Ref. 9), this is not possible.

    Google Scholar 

  68. Benjamin W. Lee, C. Quigg, and Jonathan L. Rosner, in progress.

    Google Scholar 

  69. The table of branching ratios for D -+ K7 + n7 in

    Google Scholar 

  70. Ref. 13 contains an additional assumption which is not compatible with present data (see Refs. 6–10) or with the discussion of Sec. IV. A, namely, the fixing of c in Eq. (IV.5), and hence of n, a priori.

    Google Scholar 

  71. H. Meyer, these proceedings; W. Braunschweig et al., Phys. Letters 63B, 471 (1976)

    Google Scholar 

  72. J. Burmester et al., Ibid. 64B, 369 (1976).

    Google Scholar 

  73. Gary J. Feldman, F. Bulos, D. Luke, et al., Phys. Rev. Letters 38, 117 (1977).

    Article  Google Scholar 

  74. For further considerations, see M. Bourquin and J.-M. Gaillard, Nucl. Phys. B114, 334 (1976)

    Article  Google Scholar 

  75. I. Hinchcliffe and C.H. Llewellyn Smith, Nucl. Phys. B114, 45 (1976)

    Article  Google Scholar 

  76. V. Barger, T. Gottschalk, and R. J.N. Phillips, Phys. Letters 64B, 333 (1976), and Univ. of Wisconsin report C00–569, August, 1976, to be published, and M. Gronau et al., DESY report 76/62, November, 1976, to be published.

    Google Scholar 

  77. See, e.g., Frederick J. Gilman, in Proceedings of the 1975 International Symposium on Lepton and Photon Interactions et High Energies, Stanford University, August 21–27, 1975, edited by W.T. Kirk, Stanford Linear Accelerator Center, Stanford, Calif., 1975, p. 131, and H. Harari, Ibid., p. 317.

    Google Scholar 

  78. M.L. Perl et al., Phys. Rev. Letters 35, 1489 (1975); Phys. Letters 633, 466 (1976).

    Google Scholar 

  79. S. Nussinov, Institute for Advanced Study report C00–2220–85, September, 1976, to be published in Phys. Rev.

    Google Scholar 

  80. According to H. Lipkin (these proceedings), this singlet admixture may not have predictable effects.

    Google Scholar 

  81. These have been worked out by C. Quigg (private communication).

    Google Scholar 

  82. A.J. Buras, Nucl. Phys. B109, 373 (1976).

    Article  Google Scholar 

  83. A.J. Buras and John Ellis, Nucl. Phys. B111, 341 (1976).

    Article  Google Scholar 

  84. The decimal factor is a phase space correction.

    Google Scholar 

  85. S.R. Borchardt and V.S. Mathur, Phys. Rev. Letters 36, 1287 (1976).

    Article  Google Scholar 

  86. G. Coremans-Bertrand et al., Phys. Letters 65B, 480 (1976).

    Google Scholar 

  87. I thank C. Quigg for checking the kinematic solutions.

    Google Scholar 

  88. The factor of 2 on the left of Eq. (VI.4) comes from our assumption of CP invariance, since only the sum for particles and antiparticles is quoted. Tests of CP invariance in decays of charmed particles are noted by A. Pais and S.B. Treiman, Phys. Rev. D12, 2744 (1975), and Maurice Goldhaber and Jonathan L. Rosner, to be published in Phys. Rev. D15 (1977). For an extensive review of a class of models for CP violation see H. Harari, “Beyond Charm”, lectures delivered at Les Houches Summer School, August, 1976, Weizmann Institute report WIS-76/54 PH, to be published.

    Google Scholar 

  89. H. Fritzsch, these proceedings.

    Google Scholar 

  90. R.M. Barnett, these proceedings, and in 1976 DPF Proceedings (op. cit. Ref. 9 ).

    Google Scholar 

  91. F. Gürsey, these proceedings, and in 1976 DPF Proceedings (op. cit. Ref. 9 ).

    Google Scholar 

  92. S.L. Glashow, these proceedings.

    Google Scholar 

  93. I. Karliner, Phys. Rev. Letters 36, 759 (0) (1976).

    Google Scholar 

  94. T.P. Cheng and Ling-Fong Li, “Nonconservation of Separate u-and e- Numbers in Gauge Theories with V+A Currents,” December, 1976, to be published; T.P. Cheng, these proceedings.

    Google Scholar 

  95. J.D. Bjorken and C.H. Llewellyn Smith, Phys. Rev. D7, 887 (1973).

    Google Scholar 

  96. Since fK = 1.28 fv, these constants might indeed be increasing slightly with mass. The value of fF may be useful for distinguishing among quark models: see C.H. Llewellyn Smith, Ann. Phys. (N.Y.) 53, 521 (1969). For an extreme view of symmetry-breaking effects, see J. Kandaswamy, J. Schechter, and M. Singer, Phys. Rev. D13, 3151 (1976).

    Google Scholar 

  97. The maximum in Fig. 5 occurs for mN = mF/1/3 = 1.16 GeV/c2.

    Google Scholar 

  98. A. Benvenuti et al., Phys. Rev. Letters 34, 4l9 (1975); Ibid., 34, 597 (1975); Ibid. 35, 1199 (1975); Ibid. 35, 1249 (1975); D. Cline, 1976 DPF Proceedings (op. cit. Ref. 9).

    Google Scholar 

  99. B. Barish et al., Calif. Inst. of Technology report CALT 68–567, presented by O. Fackler at 1976 DPF Meeting (op. cit. Ref. 9).

    Google Scholar 

  100. Y.S. Tsai, Phys. Rev. D4, 2821 (1971).

    Google Scholar 

  101. A. Pais and S.B. Treiman, Phys. Rev. D14, 293 (1976).

    Google Scholar 

  102. I am indebted to Arthur Halprin for suggesting this rest.

    Google Scholar 

  103. Note added: (I am indebted to S. Nussinov for discussions leading to the following remarks): An alternative version of the nonet ansatz, consistent with the 6 dominance assumption, is the following: if D° = oil -~ s u d ú - K° + (n or n’), the n and n’ must be produced through the u ú state, so that one finds the ratio listed in parentheses in Eq. (V.7). This then leads to the alternative conclusions in parentheses in Eqs. (V.8) and (V.9). Similarly if F+ = c s -} s u d g -3–7 + (n or n,), the n and n’ must be produced through the s g state, leading to a ratio of F (p+ ÷ T+n’)/F(F+ -3- î+n) which is l/4 that obtained in Ref. 32. The numbers in parentheses in Table VIII are based on the assumption that the n and n’ are produced via the s g state.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnold Perlmutter Linda F. Scott

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosner, J.L. (1977). Final States in Charmed Particle Decays. In: Perlmutter, A., Scott, L.F. (eds) Deeper Pathways in High-Energy Physics. Studies in the Natural Sciences, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1565-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1565-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1567-5

  • Online ISBN: 978-1-4757-1565-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics