Local Supersymmetry and Interactions

  • R. Arnowitt
Part of the Studies in the Natural Sciences book series (SNS, volume 12)

Abstract

An examination of some of the results of gauge supersymmetry is given. Topics discussed include unification of gravitation and electromagnetism and appearance of minimal electromagnetic couplings, the absence of the cosmological constant, possible origin of internal symmetries, and models involving color and flavor.

Keywords

Cosmological Constant Gauge Invariance Spontaneous Symmetry Breaking Higgs Potential Mass Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Volkov and V. P. Akulov, Phys. Lett. 65B, 73 (1973);Google Scholar
  2. J. Wess and B. Zumino, Nuclear Phys. B76, 477 (1974);CrossRefGoogle Scholar
  3. A. Salam and J. Strathdee, Nuclear Phys. B76, 477 (1974). For a recent review see P. Fayet and S. Ferrara, Physics Reports (to be pub.).Google Scholar
  4. 2.
    P. Nath and R. ARnowitt, Phys. Lett. 56B, 171 (1975).Google Scholar
  5. 3.
    R. Arnowitt, P. Nath and B. Zumino, Phys. Lett. 56B, 81 (1975);Google Scholar
  6. R. Arnowitt and P. Nath, Gen. Rel. Gray. 7, 89 (1976);CrossRefGoogle Scholar
  7. P. Nath and R. Arnowitt, J. de Physique 37, C2 (1976);Google Scholar
  8. P. Nath, Proc. of Conf. on Gauge Theories and Modern Field Theory, Boston 1975 (MIT Press, Cambridge, Mass. 1976 );Google Scholar
  9. R. Arnowitt and P. Nath, Phys. Rev. Lett. 36, 1526 (1976);CrossRefGoogle Scholar
  10. S.S. Chang, Phys. Rev. 14D, 447 (1976);Google Scholar
  11. R. Arnowitt and P. Nath. “Origin of Internal Symmetry”, to be pub. Phys. Rev. Feb. 15 issue (NUB #2300), P. Nath and R. Arnowitt, “Structure of Spontaneously Broken Local Gauge Supersymmetry”, sub. to Nuclear Phys. (NUB #2302).Google Scholar
  12. 4.
    D. Z. Freedman, P. van Nieuwenhuizen and S. Ferrar, Phys. Rev. D13, 3214 (1976);Google Scholar
  13. S. Deser, and B. Zumino, Physics Letters 62B, 335 (1976).Google Scholar
  14. 5.
    S. Ferrar, J. Scherk and P. van Nieuwenhuizen Phys. Rev. Lett. 37, 1035 (1976);CrossRefGoogle Scholar
  15. D. Z. Freedman and J. H. Schwarz, Stony Brook preprint ITP-SB-76–41 (1976);Google Scholar
  16. S. Deser, B. Zumino, P. di Vecchia and P. Howe, CERN preprint Th 2208;Google Scholar
  17. S. Ferrar, F. Gliozzi and J. Scherk, Ecole Normale Sup. preprint P.T.E.N.S. 76/19;Google Scholar
  18. S. Ferrara, D. Z. Freedman and P. van Nieuwenhuizen, Stony Brook Preprint ITP-SB-76–46;Google Scholar
  19. B. de Wit, University of Leiden Preprint;Google Scholar
  20. S. Ferrara and P. van Nieuwenhuizen, Phys. Rev. Lett. 37, 1669 (1976);CrossRefGoogle Scholar
  21. S. Ferrara, J. Scherk and B. Zumino, Ecole Normale Sup. preprint P.T.E.N.S. 76/23;Google Scholar
  22. D. Z. Freedman, Stony Brook preprint ITP-SB-76–58Google Scholar
  23. D. Z. Freedman and A. Das, Stony Brook preprint ITP-SB-76–64.Google Scholar
  24. 6.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);CrossRefGoogle Scholar
  25. A. Salam, Proc. of Eighth Nobel Symposium (John Wiley, N.Y., 1968 ).Google Scholar
  26. 7.
    The 0a obey {8a,0} = 0 where ct,8 = 1…4 is the Dirac index. The Majorana condition is 8a = 013 flwhere fl = -C-1 (C = charge conjugation matrix)and 8ççß~(8+y°)a. Our Dirac matrices obe = -2n the Lorentz metric obeying r) = -1. We use the convention where 0a and xu have the same dimension so that 8 of Eq. (2.2) has dimensions of mass.Google Scholar
  27. 8.
    The symbols BL and 3R stand for left and right derivatives respectively.Google Scholar
  28. 9.
    P. Nath and R. Arnowitt, Physics Lett. 65B 73 (1976).Google Scholar
  29. 10.
    Non-Riemannian geometries have been studies by B. Zumino, Proc. of Conf. on Gauge Theories and bridge, Mass. 1976 );Google Scholar
  30. V. P. Akulov, D. V. Volkov and V. A. Sorkoa, JETP Letters 22, 396 (1975).These are related to the singular geometry arising in the k ± 0 limit.Google Scholar
  31. 11.
    R. Haag, J. T. Lopuszanski and M. Sohnius, Nucl. Phys. B88, 257 (1975).CrossRefGoogle Scholar
  32. 12.
    P. G. O. Freund, Jour. Math. Phys. 17, 424 (1976)Google Scholar
  33. 13.
    For a detailed discussion of this result, see the seventh paper of Ref. (3).Google Scholar
  34. 14.
    See the last paper of Ref. (3).Google Scholar
  35. 15.
    T. Appelquist and P. Carrazone, Phys. Rev. Dll, 204 2856 (1975).CrossRefGoogle Scholar
  36. 16.
    J. C. Pati and A. Salam, Phys. Rev. D8, 1240 (1973).Google Scholar
  37. 17.
    A representation of C is the following: C = A) A {iX(a), EX(s)} where XÂs’a are the symmetric (anti-symmetric) U(4) matrices.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • R. Arnowitt
    • 1
  1. 1.Northeastern UniversityBostonUSA

Personalised recommendations