Analysis of Complex Mössbauer Spectra by Stripping Techniques

  • Arthur H. MuirJr.


The increasing activity in Mössbauer effect research has resnite the publication and analysis of Mössbauer spectra of several hunderd different substances, and this new field of spectroscopy is beginning to be used as a standard analytical tool, Quantitative analysis in the presence of several phases, some of which may have overlapping lines, presents a number of problems. A method of analysis involving, compurerbased spectrum stripping is described, and examp pplications are discussed. A family of computer programs processes Mössbauer spectra for use as unknowns and reference standards and performs the stripping calculations. Reference spectra can be either least-squares-fit Lorentzian representations or tabulated functions (spectra not suitable for fitting) Appropriate amounts of any number of reference spectra are subtracted from the unknowns with the amounts being varied interatively until the residuals become satisfactorily small. This approach has been particularly useful in analyzing certain meteorite spectra, where as many as six distinct iron-containing phases have been observed.


Difference Spectrum Metallic Iron Meteoritic Iron Standard Spectrum Lorentzian Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. K. Wertheim, Mssbauer Effect: Principles and Applications (Academic Press, New York, 1964).Google Scholar
  2. 2.
    A. H. Muir, Jr., K. J. Ando, and H. M. Coogan, Mossbat. 1 Data Index 1958–1965 (Interscience Publishers, New York, 1966).Google Scholar
  3. 3.
    Applications of the Mössbauer Effect in Chemistry - d Physics,“ Intern. At. Energy Agency, Tech. Rept. Ser, No. 50. 1996Google Scholar
  4. 4.
    L J. Gruverman, Ed.,Mössbauer Effect Methodology, 13 (Plenum Press, New York, 1965–1967)Google Scholar
  5. 5.
    E. L. Sprenkel-Segel and S. S. Hanna, Geochim. Conn Icta 28:1913 (1964).Google Scholar
  6. 6.
    A. H. Muir, Jr., A. C. Micheletti, and M. Blander., the 30th Annual Meeting of the Meteorological Society, M(National Aeronautics and Space Administration, 1Google Scholar
  7. 7.
    W. C. Davidon, Argonne National Laboratory R.:7o. m. 1959, unpublished.Google Scholar
  8. 8.
    Radiochemical Methods of Analysis (Proceedings the Syr n on Radiochemical Methods of Analysis, Salzburg, 1964), Vol. II, Sec.11.5 (International Atomic Energy Agency, Vienna, 1965).Google Scholar
  9. 9.
    R. L. Heath, R. G. Helmer, L. A. Schmittroth, and C. A. C: ziez cl. nstr. Methods 47:281 (1967); also, R. G. Helmer, R. L. Heath. Lroth, G. A. Jayne, and L. M. Wagner, Nucl. Instr..; and H. D. Graber and D. D. Watson, Nucl. Instr. Methodg Google Scholar
  10. 10.
    D. A. Shirley, M. Kaplan, and P. Axel, Phys. Rev Google Scholar
  11. 11.
    G. A. Bykov and Pham Zuy Hein, Zh. Eksperim. i reor. Ti. 47 (1962); English transi., Soviet Phys. JETP 16:646 (1963).Google Scholar
  12. 12.
    R. S. Preston, S. S. Hanna, and J. Heberie, Phys. Rev 126:2207 (1962).Google Scholar
  13. 13.
    G. Lang, Nucl. Instr. Methods 24:425 (1963).Google Scholar
  14. 14.
    D. A. O’Connor, Nucl. Instr. Methods 21:318 (1963).Google Scholar
  15. 15.
    R. M. Housley, N. E. Erickson, and J. G. Dash, Nuel. Instr, Methods 27:29 (1964).Google Scholar
  16. 16.
    S. Margulies and J. R. Ehrman, Nuel. Instr, Methods 12:131 (1961); also, S. Margulies, P. Debrunner, and H. Frauerifelder, Nucl,Instr, Methods 21:217 (1963).Google Scholar
  17. 17.
    J. Heberle, Nucl. Instr. Methods 58:90 (1968); also, D. W. Haferneister and E. B. Shera, /Niue/. or. Methods 41:133 (1966); and S. L. Ruby and J. M. Hicks, Rev. Set Instr 33:27 (1962).Google Scholar
  18. 18.
    R. M. Housley and R. W. Grant (to be published)Google Scholar
  19. 19.
    R. M. Housley, Nucl. Instr. Methods 35:77 (1965).Google Scholar
  20. 20.
    Programmer’s Reference Manual S-C 4020 Comcuttrom- berg-Carlson Document No. 9500056, 1964, rev. 1960, mi.Google Scholar
  21. 21.
    A. C. Micheletti and A. H. Muir, Jr. (to be publicGoogle Scholar
  22. 22.
    H. Wiedersich, J. W. Savage, H. Muir, Jr., and 1 1, Swarthout, Mineral. Hag 36:643 (1968)Google Scholar
  23. 23.
    S. Hafner and M. Kalvius, Z. Krist 123:443 (1966).Google Scholar
  24. 26.
    A. Gerard and M. Delmelie, Compt. Rend 259:1756 (1’’’); also, Geo-iIntern 1:336 (1964).Google Scholar
  25. 27.
    E. L. Sprenkel-Segel and S. S. Hanna, “Mbssbaui of Ie Iron Minerals,” in: Mössbauer Effect Methodology, I J. Call Ed. (Plenum Press, New York, 1966), p. 113.Google Scholar
  26. 28.
    E. L. Sprenkel-Segel and G. J. Perlow, Icarus 8:66 (1“Google Scholar
  27. 29.
    E. L. Sprenkel-Segel, private communication.Google Scholar
  28. 30.
    U. Gonser, R. W. Grant, A. H. Muir, Jr., and H. W:edersicb, Acta Met 14:259 (1966).Google Scholar
  29. 31.
    A. A. Temperley and H. W. Lefevre, J. Phys. Chem,Solids 27:85 (1966).Google Scholar
  30. 32.
    M. Abdel Gawad, private communication.Google Scholar
  31. 33.
    M. J. Rossiter and A. E. M. Hodgson, J. Inorg, Nigel. Cher 27:63 (1965).Google Scholar
  32. 34.
    C. L. Herzenberg and D. Toms. J. Geophys Res 71:2661Google Scholar
  33. 35.
    B. Mason, Am. Mineralogist 52:307 (1967).Google Scholar
  34. 36.
    A. FI. Muir, Jr., and M. Abdel Gawad (to be publishGoogle Scholar
  35. 37.
    C. E. Johnson, M. S. Ridout, and T. E. Cranshaw, Pro,Pro,4. Soc, (London) 81:1079 (1963).Google Scholar
  36. 38.
    B. J. Evans, S. Ghose, and S. Hafner, J. Gem 75:306 (1967)Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • Arthur H. MuirJr.
    • 1
  1. 1.Science CenterNorth American Rockwell CorporationThousand OaksUSA

Personalised recommendations