Coulomb Excitation Techniques in Mössbauer Methodolog

  • Felix E. Obenshain


The 57.03-keV state of Ge73 has been populated by Coulomb excitation and the recoiling excited nuclei implanted into chromium, iron, copper, and germanium. The incident particles were 25-MeV Nuclear and solid state properties of Ge73 have been determind by studying the de-excitation gamma rays by Mössbauer techniques. The present measurements yield a mean lifetime of (2.25 ± 0.18) × 10−9 sec and a spin of 7/2+ for this state. The isomer shift between pure germanium and GeO2 is (+1.0 ± 0.1) mm/sec. Electron densities calculated for these two cases lead to the result that the excited states radius is larger than that of the ground state and the fractional charge is ΔR/R = +1.0 ± 10−3. The recoilless fraction measured for alloys of germanium in iron and chromium have been compared with those for germanium implanted into the two materials, The result are discussed in terms of a simple impurity model, The technique ofCoulomb recoil implantation not only extends the number of nuclei, Ge73 being only an example, available for Mössbauer measurements, but also provides a new tool for investigation of very dilute alloys systems and radiation damage due to charged particles in matter.


Isomer Shift Target Nucleus Internal Magnetic Field Coulomb Excitation Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Seyboth, F. E. Obenshain, and G. Czjzek,Phyv, rr. LettPry 1 ‘854 (1965).Google Scholar
  2. 2.
    Y. K. Lee, P. W. Keaton, E. T. Ritter, and J. C’. 14: 957 (1965).Google Scholar
  3. 3.
    G. Czjzek, J. L. C. Ford, F. E. Obenshain, and D. Letters 19: 673 (1966).Google Scholar
  4. 4.
    G. Czjzek, J. L. C. Ford, J. C. Love, F. E. Obenshain, and H. F. H. Wegener, Phys. Rev. Letters 18: 529 (1967).CrossRefGoogle Scholar
  5. 5.
    G. W. Sprouse, G. M. Kalvius, and S. S. Hanna, Phys. Re i Lt -: 1041 (1967).Google Scholar
  6. 6.
    G. Goldring, R. Kalish, and H. Spehi, Natl. Phys. 80:33 (1966)Google Scholar
  7. L. Grodzins, R. Borchers, and G. B. Hagemann, Phys. Letters 2,1 —14 (1966).Google Scholar
  8. 8.
    F. Boehm, G. B. Hagemann, and A. Winther, Phys, Leiters 21: 217 (1966).Google Scholar
  9. 9.
    G. Czjzek, J. Ford, J. Love, F. Obenshain, and H. Wegener, Physical Review (to be published).Google Scholar
  10. 10.
    R. R. Stevens, J. Eck, E. T. Ritter, Y. K. Lee, and J. C. Walker, Phys, Rev. 158: 1118 (1967).CrossRefGoogle Scholar
  11. 11.
    K, Alder, A. Bohr, T. Huus, B. ModeIsOn, and A. Windier, Rev. Mod, Phys. 28: 432 (1956).Google Scholar
  12. 12.
    J. G. Mullen, Phys. Letters 15: 15 (1965).Google Scholar
  13. 13.
    P. W. Keaton, Y, K. Lee, R. R. Stevens, and J. C. Walker, Oak Ridge, 154: 287 (1967).Google Scholar
  14. 14.
    R. Street and B. Window, Proc, Phys. Soc.(London) 89:587(1966)Google Scholar
  15. 15.
    G. Dolling and R. A. Cowley, Proc, Phys. Soc. (London) 89: 463 (1966)Google Scholar
  16. 16.
    C. W. Nestor, T. C. Tucker, T..A. Carlson, L. D. I, F. B. Malik, and C. Froese, ORNL-4027 (to be published).Google Scholar
  17. 17.
    B. Zimmermann, H. Jena, T. Ischenko, H. Kilian, and D. Seyboth, Phys. Skit, Sol. 27: 639 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • Felix E. Obenshain
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations