Skip to main content

Mössbauer Effect by Recoil Implantation Through Vacuum

  • Conference paper
Mössbauer Effect Methodology

Abstract

The Mössbauer effect was observed for Coulon d Fe57 recoils implanted through vacuum into various media [copper, aluminum, gold, iron, germanium, silicon, graphite, Fe2O3, and (Fe, Mg)2SiO4]. This method avoids heating and radiation damage of the host medium by the beam. Where comparison data are available for copper, gold, aluminum,and iron, the results at room temperature indicate that, within the nuclear lifetime of 10−7 sec, the recoils find a normal lattice site. A measurement with copper at 5°K indicates a similar result.Implantation into germanium and silicon showed two resonance lines. For graphite, Fe2O3, and (Fe, Mg)2SiO4, the Mössbauer effect is signifier alignment of the nuclear recoils produced in the Coulomb excitation process was observed by detecting the gamma-r a Mössbauer polarimeter. The recoil alignment was pre ducing helium gas into the space traversed by the recoils.The application of the techniques used for Fe57 to other Mössbauer nuclei is discussed. In particular, beam and target requirements and recoil flight times are considered.

Work supported in part by the U.S. Army Research Office (Durham) and the National Science Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Grodzins, R. Borchers, and G. B. Hagemann, Phys. Letters 21: 214

    Google Scholar 

  2. P. Gilad, G. Goldring, R. H. Herber, and R. Kalish. AWL Phys. (1967).

    Google Scholar 

  3. D. E. Murnick, in: Hyperfine Interactions, A. J. Freeman and R. B. F. ( Academic Press, New York, 1967 ).

    Google Scholar 

  4. I. Ben Zvi, P. Gilad, G. Goldring, P. Hillman, A. Schwarzschild, a H’ Phys. Rev. Letters 19: 373 (1967).

    Article  Google Scholar 

  5. D. Seyboth, F. E. Obenshain, and G. Czjzek, Phys, Rev. Lette:1

    Google Scholar 

  6. Y. K. Lee, P. W. Keaton, Jr„ E. T. Ritter, and J. C. Walker, 1 14: 957 (1965).

    Google Scholar 

  7. S. L. Ruby and R, E. Holland, Phys. Rev. Letters (1965).

    Google Scholar 

  8. D. A. Goldberg, P. W. Keaton, Y. K. Lee, L. Ldi J. C. Walker, Phys. Rev. Letters 15: 418 (1965).

    Article  CAS  Google Scholar 

  9. J. Christiansen, E. Recknagel, and G. Weyer, Phys. Lerteri (1,66); and J. Christiansen, P. Hindennach, U. Morfeld, E. RcThl, egel, and G. Weyer, Nucl. Phys. A99: 345 (1967).

    CAS  Google Scholar 

  10. G. Czjzek, J. L. C. Ford, Jr., J. C. Love, F. E. Obenshain, an F. Wegener, Phys, Rev. Letters 18: 529 (1967).

    Article  CAS  Google Scholar 

  11. E. T. Ritter, P. W. Keaton, Jr., Y. K. Lee, R. R. Stevens, Jr., and J. C. Walker, Phys. Rev. 154: 287 (1967).

    Article  CAS  Google Scholar 

  12. G. Czjzek, J. L. C. Ford, Jr., F. E. Obenshain, and D. Seyboth, Phys. Letters 19: 673 (1966).

    Article  CAS  Google Scholar 

  13. J. Lindhard, M. Scharff, and H. E. Schiott, Kg!. Danske Videnskab. Selskab, Mat. Fys. 33: No. 14 (1963).

    Google Scholar 

  14. E. Kankeleit, Rev. Sci. Instr. 35:195 (1965).

    Google Scholar 

  15. P. C. Noreen and G. K. Wertheim, Phys. Chem. Solids 23, 1111 (1962).

    Article  Google Scholar 

  16. U. Erich and D. Quitmann, in: Hyperfine Structure and P. gar: ’,s, ed. by E. Matthias and D. A. Shirley (:*Forth-Hollan, re“ 1968 ), p. 130.

    Google Scholar 

  17. M. F. Thomas and M. A. Grace, Phys. Letters 10;3(!

    Google Scholar 

  18. G. D. Sprouse and S. S. Hanna, Nucl. Phys. 74:1-r.

    Google Scholar 

  19. G. Goldring, in: Hyperfine Structure and Nude ar::)ris, ed. by E, Matthias and D. A. Shirley (North-Holland, A a; Brn 1968 ), p. 630.

    Google Scholar 

  20. S. S. Hanna, J. Heberle, C. Littlejohn, G. J. F., ’;. ït..:)`. Preston, and D. H. Vincent, Phys. Rev. Letters 4: 177 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this paper

Cite this paper

Sprouse, G.D., Kalvius, G.M. (1968). Mössbauer Effect by Recoil Implantation Through Vacuum. In: Gruverman, I.J. (eds) Mössbauer Effect Methodology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1550-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1550-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1552-1

  • Online ISBN: 978-1-4757-1550-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics