Temperature Control

  • W. A. Steyert
  • M. D. Daybell


Over the entire range of temperatures which are accessible to Mössbauer studies, it is possible to regulate temperature to better than 1 part in 104. The use of thermocouples for electronic measurement and control is useful above 10°K. In the region from 0.03 to 20°K, germanium and carbon resistance thermometry is convenient and reliable. Over limited temperature ranges, very precise regulation is available through control of the vapor pressure above a cryogen. The resistance-bridge and temperature-control unit for the 0.03°K dilution refrigerator in operation at Los Alamos is discussed. Co57 Mössbauer thermometry below 1.0°K is also discussed.


Dilution Refrigerator Limited Temperature Range Zeeman Level Mossbauer Effect Iron Absorber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Dash, R. D. Taylor, P. P. Craig, D. E. Nagle, D. R. F Cochran, and W. E. Keller, Phys. Rev. Letters 5: 152 (1960)Google Scholar
  2. R. P. Taylor: Proceedings of the Second International Conference on the Mossbauer Effect, D. M. J. Compton and A. H. Schoen, eds. (John Wiley and Sons, New York, 1962 ), p. 203.Google Scholar
  3. 2.
    R. S. Preston, Phys. Rev, Letters 19:75 (1967) and references therein.Google Scholar
  4. 3.
    G. K. Wertheim and D. N. E. Buchanan, Phys. Rev. 161: 478 (1967).CrossRefGoogle Scholar
  5. 4.
    R. L. Powell, M. D. Bunch, and R. J. Corruccini, Cryogenics 1: 139 (1961).CrossRefGoogle Scholar
  6. 5.
    Nut. Bur. Std. (U.S.), Circ. 561. These tables are in Leeds and Northrup Co., Philadelphia, Penna., Booklet No. 07789.Google Scholar
  7. 6.
    H. Suhl and D. Wong, Physics 3: 17 (1967).Google Scholar
  8. 7.
    P. P. Craig, in: Mössbauer Effect Methodology, Vol. 1, I. J. Gruverman, ed. ( Plenum Press, New York, 1965 ), p. 135Google Scholar
  9. P. P. Craig, R. C. Perisho, R. Segnan, and W. A. Steyert, Phys. Rev. 138: A1460 (1965).CrossRefGoogle Scholar
  10. 8.
    J. R. Clement, E. H. Quinnell, M. C. Steele, R. A Hein, and R. L. Dolecek, Rev. Sci. Instr. 24: 545 (1953).CrossRefGoogle Scholar
  11. 9.
    W. C. Black, W. R. Roach, and J. C. Wheatley, Rev, Sci. Instr. 35: 587 (1964).CrossRefGoogle Scholar
  12. 10.
    H. E. Hall, P. J. Ford, and K. Thompson, Cryogenics 6: 80 (1960).CrossRefGoogle Scholar
  13. O. E. Vickes and J. C. Wheatley, Phys. Letters 24A: 440 (1967).CrossRefGoogle Scholar
  14. 11.
    E. Elad and M. Nakamura, Nucl. hair. Methods 54: 308 (1967).CrossRefGoogle Scholar
  15. E. Elad and M. Nakamura, IEEE Transactions in Nuclear Science, N.S.-15, No. 1 (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • W. A. Steyert
    • 1
  • M. D. Daybell
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations