Mössbauer Analysis of Meteoritic Iron Minerals

  • E. L. Sprenkel-Segel
  • S. S. Hanna


The important role of iron in both the classification of meteorites and the investigation of their preterrestrial history was first shown by Prior [1, 2]. He introduced a chemical classification based on the Fe/Ni ratio of the metal phase and the MgO/FeO ratio of the silicate phase (see Table I) and found that these two ratios decreased together. Prior stated: “... in meteoric stones generally, the poorer they are in nickel—iron, the richer that iron is in nickel, and the richer in iron are the magnesium silicates.” The explanation advanced for this relationship was that meteorites have separated from a single magma which has passed through successive stages of oxidation so that as the metallic iron became progressively more oxidized the residual metal grew richer in nickel.


Metallic Phase Metallic Iron Silicate Phase Absorption Pattern Magnesium Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. T. Prior, Mineral. Mag. 18: 26 (1916).CrossRefGoogle Scholar
  2. 2.
    G. T. Prior, Mineral. Mag. 19: 51 (1920).CrossRefGoogle Scholar
  3. 3.
    H. C. Urey and H. Craig, Geochim. et Cosmochim. Acta 4: 36 (1953).CrossRefGoogle Scholar
  4. 4.
    B. Mason, Am. Museum Noeitates 2085: 1 (1962).Google Scholar
  5. 5.
    B. Mason, Geochim. et Cosmochim. Acta 27: 1011 (1963).CrossRefGoogle Scholar
  6. 6.
    H. Craig, Isotopic and Cosmic Chemistry ( North Holland Publishing Company, Amsterdam, 1964 ), pp. 401–451.Google Scholar
  7. 7.
    K. Keil and K. Fredriksson, J. Geophys. Res. 69: 3487 (1964).CrossRefGoogle Scholar
  8. 8.
    E. L. Sprenkel-Segel, S. S. Hanna, and D. J. Bailey, Rev. Mod. Phys. 36: 360 (1964).Google Scholar
  9. 9.
    E. L. Sprenkel-Segel and S. S. Hanna, Geochim. et Cosmochim. Acta 28: 1913 (1964).CrossRefGoogle Scholar
  10. 10.
    S. S. Hanna, J. Herberle, C. Littlejohn, G. J. Perlow, R. S. Preston, and D. H. Vincent, Phys. Rev. Letters 4: 177 (1960).CrossRefGoogle Scholar
  11. 11.
    O. C. Kistner and A. W. Sunyar, Phys. Rev. Letters 4: 412 (1960).CrossRefGoogle Scholar
  12. 12.
    K. J. Jensen, Trans. Am. Geophys. Union 45: 87 (1964).Google Scholar
  13. 13.
    K. Ono, A. Ito, and E. Hirahara, J. Phys. Soc. Japan 17: 1615 (1962).CrossRefGoogle Scholar
  14. 14.
    D. J. Rokop, personal communication from Argonne National Laboratory, Argonne, Illinois (1963).Google Scholar
  15. 15.
    C. E. Johnson, M. S. Ridout, and T. E. Cranshaw, in The Mössbauer Effect, edited by D. M. J. Compton and E. H. Schoen ( John Wiley & Sons, Inc., New York, 1962 ), pp. 142–145.Google Scholar
  16. 16.
    J. A. Wood, Icarus,in press.Google Scholar
  17. 17.
    H. C. Urey and T. Mayeda, Geochim. et Cosmochim. Acta 17: 113 (1959).CrossRefGoogle Scholar
  18. 18.
    R. S. Preston, S. S. Hanna, and J. Heberte, Phys. Rev. 128: 2207 (1962).CrossRefGoogle Scholar
  19. 19.
    E. L. Sprenkel-Segel and G. J. Perlow, private communication.Google Scholar
  20. 20.
    E. O. Hovey, Am. Museum Novitates 203: 1 (1925).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • E. L. Sprenkel-Segel
    • 1
    • 2
  • S. S. Hanna
    • 3
  1. 1.Department of PhysicsIllinois Institute of TechnologyChicagoUSA
  2. 2.Argonne National LaboratoryArgonneUSA
  3. 3.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations