Electric Field Gradients in Iron Compounds

  • R. W. Grant


Since the Mössbauer effect was observed in Fe57 this isotope has been used to study the physical and chemical properties of many iron-containing compounds. The second nonzero term which describes the electrostatic interaction between a nucleus and the surrounding electrons is the nuclear quadrupole interaction. When the local symmetry of the iron atom is less than cubic, this interaction can split or shift the nuclear energy levels. This phenomenon was first observed, via the Mössbauer effect, by Kistner and Sunyar [1] in the Fe57 Mössbauer spectrum of Fe2O3. Mössbauer spectroscopy has thus made it possible to directly measure the magnitude, and in some cases the sign, of the nuclear quadrupole coupling constants in many iron compounds. This parameter has had several interesting physical and chemical applications, and some systematics in the values have been observed.


Electric Field Gradient Iron Compound Quadrupole Coupling Constant Nuclear Quadrupole Interaction Ferrous Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. C. Kistner and A. W. Sunyar, Phys. Rev. Letters 4: 412 (1960).CrossRefGoogle Scholar
  2. 2.
    A. Abragam, L’Effect Mössbauer et ses Applications à l’Etude des Champs Internes ( Gordon and Breach, New York, 1964 ), p. 28.Google Scholar
  3. 3.
    H. Kofpermann, Nuclear Moments ( Academic Press, New York, 1958 ), p. 127.Google Scholar
  4. 4.
    R. L. Collins, J. Chem. Phys. 42: 1072 (1965).CrossRefGoogle Scholar
  5. 5.
    J. R. Gabriel and S. L. Ruby, Nucl. Instr. Methods 36: 23 (1965).CrossRefGoogle Scholar
  6. 6.
    G. K. Wertheim and R. H. Herber, J. Chem. Phys. 36: 2497 (1962).CrossRefGoogle Scholar
  7. 7.
    P. K. Gallagher, J. B. MacChesney, and D. N. E. Buchanan, J. Chem. Phys. 41:2429 (1964); J. Chem. Phys. 43: 516 (1965).CrossRefGoogle Scholar
  8. 8.
    P. George, J. Beetlestone, and J. S. Griffith, Rev. Mod. Phys. 36: 441 (1964).CrossRefGoogle Scholar
  9. 9.
    R. Bersohn, J. Chem. Phys. 29: 326 (1958).CrossRefGoogle Scholar
  10. 10.
    R. M. Sternheimer, Phys. Rev. 130: 1423 (1963).CrossRefGoogle Scholar
  11. 11.
    G. Burns, Phys. Rev. 124: 524 (1961).CrossRefGoogle Scholar
  12. 12.
    R. R. Sharma and T. P. Das, J. Chem. Phys. 41: 3581 (1964).CrossRefGoogle Scholar
  13. 13.
    J. O. Artman, Phys. Rev. 143: 541 (1966).CrossRefGoogle Scholar
  14. 14.
    A. H. Muir, Jr., K. J. Ando, and H. M. Coogan, Mössbauer Effect Data Index (North American Aviation Science Center, Thousand Oaks, California, 1965 ).Google Scholar
  15. 15.
    P. R. Brady, J. F. Duncan, and K. F. Mok, Proc. Roy. Soc. (London) 287: 343 (1965).Google Scholar
  16. 16.
    R. Ingalls, Phys. Rev. 133: A787 (1964).CrossRefGoogle Scholar
  17. 17.
    A. J. Freeman and R. E. Watson, Phys. Rev. 131: 2566 (1963).CrossRefGoogle Scholar
  18. 18.
    L. G. Lang, S. DeBenedetti, and R. L. Ingalls, J. Phys. Soc. Japan 17 (Suppl. B-1): 131 (1962).Google Scholar
  19. 19.
    C. E. Johnson, W. Marshall, and G. J. Perlow, Phys. Rev. 126: 1503 (1962).CrossRefGoogle Scholar
  20. 20.
    P. Zory, Phys. Rev. 140: A1401 (1965).CrossRefGoogle Scholar
  21. 21.
    K. Ono and A. Ito, J. Phys. Soc. Japan 19: 899 (1964).CrossRefGoogle Scholar
  22. 22.
    G. K. Wertheim, Phys. Rev. 121:63 (1961); A. Abragam, op. cit.,p. 60.Google Scholar
  23. 23.
    V. I. Gol’danskii, E. F. Makarov, and V. V. Khrapov, Phys. Letters 3: 34 (1963).Google Scholar
  24. 24.
    U. Gonser and R. W. Grant, Biophys. J. 5: 823 (1965).CrossRefGoogle Scholar
  25. 25.
    S. L. Ruby and P. A. Flinn, Rev. Mod. Phys. 36: 351 (1964).CrossRefGoogle Scholar
  26. 26.
    Brady, Duncan, and Mok, cited in J. F. Duncan and R. M. Golding, Quart. Rev. (London) 19: 36 (1965).CrossRefGoogle Scholar
  27. 27.
    P. H. Remy and H. Pollak, J. App. Phys. 36: 860 (1965).CrossRefGoogle Scholar
  28. 28.
    P. H. Remy and H. Pollak, Rev. Mod. Phys. 36:352 (1964); H. Pollak and P. H. Remy, Bull. Soc. Belge. Phys. Ser. 4: 4 (1964).Google Scholar
  29. 29.
    R. W. Grant, H. Wiedersich, A. H. Muir, Jr., U. Gonser, and W. N. Delgass, to be published in J. Chem. Phys.Google Scholar
  30. 30.
    R. L. Collins and R. Pettit, J. Chem. Phys. 39: 3433 (1963).CrossRefGoogle Scholar
  31. 31.
    J. Lees and P. A. Flinn, Phys. Letters 19: 186 (1965).CrossRefGoogle Scholar
  32. 32.
    E. Fluck, W. Kerler, and W. Neuwirth, Angew. Chem. 2: 277 (1963).CrossRefGoogle Scholar
  33. 33.
    R. W. Grant and W. N. Delgass, unpublished data.Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • R. W. Grant
    • 1
  1. 1.North American Aviation Science CenterThousand OaksUSA

Personalised recommendations