Skip to main content

Cryostats for Mössbauer Experiments

  • Conference paper
Mössbauer Effect Methodology

Abstract

There may be several reasons for needing low temperatures in a Mössbauer experiment. First, the fraction f of gamma rays, emitted or absorbed without recoil energy loss, increases with decreasing temperatures and actually only a few of the possible transitions (see, for instance, Boyle and Hall [1]) will show an appreciable Mössbauer effect at room temperatures. Second, the sample material under investigation may show characteristic properties, for example, magnetic ordering (see Wertheim [2]) only at low temperatures. Third, many measurements, such as a precise determination of the isomer shift, require that source and absorber be kept at a constant and readily reproducible temperature. This requirement is comparatively easily achieved by keeping the sample at the boiling point of a liquefied gas, usually liquid nitrogen (see, for example Preston et al. [3]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. F. Boyle and H. E. Hail, “The Mössbauer Effect,”Rept. Prog. Phys. 25: 441–524 (1962).

    Article  CAS  Google Scholar 

  2. G. K. Wertheim, J. Appl. Phys., Suppl. 32: 1108 (1961).

    Article  Google Scholar 

  3. R.S. Preston, S.S. Hanna, and J. Heberle, Phys. Rev. 128: 2207 (1962).

    Article  CAS  Google Scholar 

  4. J. H. Bell, Cryogenic Engineering (Prentice Hall, Englewood Cliffs, N. J., 1963 ), p. 354.

    Google Scholar 

  5. G. J. Perlow, Rev. Mod. Phys. 36: 353 (1964).

    Article  CAS  Google Scholar 

  6. P. Craig, Mössbauer Effect Methodology, this volume, p. 135.

    Google Scholar 

  7. M. Kalvius, Phys, Rev. 137: B1441 (1965).

    Article  Google Scholar 

  8. G. R. White, Experimental Techniques in Low Temperature Physics (Clarendon Press, Oxford, 1959), p. 198ff.

    Google Scholar 

  9. R. Booth and C. E. Violet, Nucl. Methods 25: 1 (1963).

    Article  CAS  Google Scholar 

  10. C. W. Kocher, Rev. Sci. Instr. 36: 1018 (1965).

    Article  CAS  Google Scholar 

  11. R. L. Cohen, P. B. McMullin, and G. K. Wertheim, Rev. Sci. Instr. 34: 671 (1963).

    Article  Google Scholar 

  12. E. Kankeleit, Rev. Sci. Instr. 35:194 (1964), and Mössbauer Effect Methodology, this volume, p. 47.

    Google Scholar 

  13. L. D. Roberts and J. O. Thomson, Phys. Rev. 129: 664 (1963).

    Article  CAS  Google Scholar 

  14. M. McClontock, Cryogenics (Reinhold Publishing Co., New York, 1964), p. 57ff.

    Google Scholar 

  15. R. B. Scott, Cryogenic Engineering (D. Van Nostrand Co., Inc., New York, 1959 ), p. 349.

    Google Scholar 

  16. R. Berman and D. J. Huntley, Cryogenics 3: 70 (1963).

    Article  CAS  Google Scholar 

  17. R, Berman, J. C. F. Brock, and D. J. Huntley, Cryogenics 4: 233

    Google Scholar 

  18. R. L. Rosenbaum, R. R. Oder, R. B. Goldener, Cryogenics 4: 333 (1964).

    Article  CAS  Google Scholar 

  19. C. R. Barber, “Resistance Thermometers for Low Temperatures”, Progr. Cryogenics 2: 147–171 (1960).

    CAS  Google Scholar 

  20. M. Kalvius, Bull. Am. Phys. Soc. 9, 634 (1964).

    Google Scholar 

  21. D. W. Hafemeister, G. DePasqualiandH. deWaard, Phys. Rev. 135, B1099 (1964).

    Article  Google Scholar 

  22. N. Blum, Mössbauer Effect Methodology, this volume, p. 147.

    Google Scholar 

  23. R. Bercaw and M. Kalvius (unpublished).

    Google Scholar 

  24. J. K. Major, Nucl. Phys. 33:323 (1962), and Mössbauer Effect Methodology, this volume, p. 89.

    Google Scholar 

  25. A.H. Muir, E. Kankeleit, and F. Boehm, Rev. Mod. Phys. 36: 469 (1964).

    Article  Google Scholar 

  26. B. W. Murray, M. S. Thesis, Department of Physics, Western Reserve University, Cleveland, Ohio (unpublished).

    Google Scholar 

  27. W. Wiedemann, Kommission fur Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften, Nebenstelle Reaktorstation, Garching bei München, West Germany.

    Google Scholar 

  28. W. Wiedemann, W. A. Mundt, and D. Kullman, Cryogenics 5: 94 (1965).

    Article  CAS  Google Scholar 

  29. M. Kalvius, P. Kienle, H. Eicher, W. Wiedemann, and C. Schuler, Z. Physik 172: 231 (1962).

    Article  Google Scholar 

  30. H. Dobler, G. Petrich, S. Hitler, P. Kienle, W. Wiedemann, and H. Eicher, Phys, Letters 10: 319 (1964).

    Article  CAS  Google Scholar 

  31. C. F. Morrison, “Generalized Instrumentation for Research and Teaching,” Washington State University, Pullman, Washington.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer Science+Business Media New York

About this paper

Cite this paper

Kalvius, M. (1965). Cryostats for Mössbauer Experiments. In: Gruverman, I.J. (eds) Mössbauer Effect Methodology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1541-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1541-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1543-9

  • Online ISBN: 978-1-4757-1541-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics