Superconducting Ground State of a Strongly Interacting Electron System: UBe13

  • H. R. Ott
  • H. Rudigier
  • Z. Fisk
  • J. L. Smith
Part of the NATO ASI Series book series (NSSB, volume 117)

Abstract

Very recently it has been demonstrated that UBe13, in spite of its seemingly unfavourable normal-state properties, is a bulk superconductor with a critical temperature Tc of about 0.9 Kl. The occurrence of superconductivity in UBe13 is particularly surprising since the non-magnetic compoinds LaBe13 LuBe13 and ThBe13 are not superconducting above 0.45 K2. Both the superconducting and normal state properties of UBe13, respectively, clearly indicate that they must be dominated by the presence of 5f electrons on the U ions. The low-temperature properties of UBe13 are indeed very similar to those of CeCu2Si2 a compound whose anomalous behaviour is thought to arise from strong interactions of conduction electrons with the 4f electrons of the Ce ions3. Here we should like to discuss some of the experimentally determined properties of UBe13, mainly intending to initiate further theoretical work considering the possible ground states of strongly interacting electronic systems in solids.

Keywords

Electrical Resistivity Superconducting State Normal State Property Crystal Electric Field Strongly Interact Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.R. Ott, H. Rudigier, Z. Fisk, and J.L. Smith, Phys.Rev.Lett. 50, 1595 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    E. Bucher, J.P. Maita, G.W. Hull, R.C. Fulton, and A.S. Cooper, Phys.Rev.B 11, 440 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys.Rev.Lett. 43, 1892 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    N.C. Bänziger, and R.E. Rundle, Acta Crystallogr. 2, 258 (1949)CrossRefGoogle Scholar
  5. 5.
    see e.g. F. Hulliger and H.R. Ott, Z.Phys.B 29, 47 (1978)Google Scholar
  6. 6.
    K.R. Lea, M.J.M. Leask, and W.P. Wolf, J.Phys.Chem.Solids 23, 258 (1962)CrossRefGoogle Scholar
  7. 7.
    J.J.M. Franse, P.H. Frings, F.R. de Boer, A. Menovsky, C.J. Beers, A.P.J. van Deursen, H.W. Myron, and A.J. Arko, Phys.Rev.Lett. 48, 1749 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Fisk, and A.C. Lawson, Solid State Commun. 13, 277 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    K.H.J. Buschow,H.J. van Daal, F.E. Maranzana, and P.B. van Aken Phys.Rev.B 3, 1662 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    B.C. Sales and R. Viswanathan, J.Low Temp. Phys. 23, 449 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    W. Franz, A. Griessel, F. Steglich, and D. Wohlleben, Z.Phys.B 31, 7 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    B. Cornut, and B. Coqblin, Phys.Rev.B 5, 4541 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    K. Andres, J.E. Graebner, and H.R. Ott, Phys.Rev.Lett. 35, 1779 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    F.E. Maranzana, Phys.Rev.Lett. 25, 239 (1970)ADSCrossRefGoogle Scholar
  15. 15.
    J.K. Kjems, H.R. Ott, and S.K. Sinha, unpublished resultsGoogle Scholar
  16. 16.
    P. Delsing, H.R. Ott, and H. Rudigier, unpublished resultsGoogle Scholar
  17. 17.
    see e.g. K.D. Schotte, and U. Schotte, Phys.Lett. 55A, 38 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • H. R. Ott
    • 1
  • H. Rudigier
    • 1
  • Z. Fisk
    • 2
  • J. L. Smith
    • 2
  1. 1.Laboratorium für Festkörperphysik ETH-HönggerbergZürichSwitzerland
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations