Orbital Effects in Actinide Systems

  • G. H. Lander
Part of the NATO ASI Series book series (NSSB, volume 117)


Actinide magnetism presents a number of important challenges; in particular, the proximity of 5f band to the Fermi energy gives rise to strong interaction with both d and s like conduction electrons, and the extended nature of the 5f electrons means that they can interact with electron orbitals from neighboring atoms. Theory has recently addressed these problems. Often neglected, however, is the overwhelming evidence for large orbital contributions to the magnetic properties of actinides. Some experimental evidence for these effects are presented briefly in this paper. They point, clearly incorrectly, to a very localized picture for the 5f electrons. This dichotomy only enhances the nature of the challenge.


Form Factor Hyperfine Field Neutron Inelastic Scattering Orbital Moment Magnetization Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. L. Buyers, A. F. Murray, T. M. Holden, E. C. Svensson, P. de V. DuPlessis, G. H. Lander, and O. Vogt, Physica 102B 291 (1980).Google Scholar
  2. 2.
    B. G. Wybourne, “Spectroscopic Properties of Rare Earths”, Interscience Publishers, New York, 1965.Google Scholar
  3. 3.
    G. Busch, O. Vogt, A. Delapalme, and G. H. Lander, J. Phys. C 12 1391 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    H. W. Knott, G. H. Lander, M. H. Mueller, and O. Vogt, Phys. Rev. B 21 4159 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    R. Maglic, G. H. Lander, M. H. Mueller, and R. Kleb, Phys. Rev. B 17 308 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    A. J. Freeman, J. P. Desclaux, G. H. Lander, and J. Faber, Phys. Rev. B 13 1168 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    G. H. Lander, J. Faber, A. J. Freeman, and J. P. Desclaux, Phys. Rev. B 13 1177 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    J. X. Boucherie, D. Givord, and J. Schweizer, J. de Physique 43 C7–199 (1982).CrossRefGoogle Scholar
  9. 9.
    G. H. Lander and D. J. Lam, Phys. Rev. B 14 4064 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    G. H. Lander, A. T. Aldred, B. D. Dunlap, and G. K. Shenoy, Physica 86–88B 152 (1977).Google Scholar
  11. 11.
    H. A. Mook, Phys. Rev. 148 495 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    R. M. Moon, W. C. Koehler, J. W. Cable, and H. R. Child, Phys. Rev. B 5 997 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    C. Stassis, C.-K. Loong, B. N. Harmon, and S. H. Liu, J. Appl. Phys. 50 7567 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    C. Stassis, C.-K. Loong, J. Zarestky, O. D. McMasters, R. M. Moon, and J. R. Thompson, J. Appl. Phys. 53 7890 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    G. H. Lander, J. F. Reddy, A. Delapalme, and P. J. Brown, Phys. Rev. Letters 44, 603 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    B. D. Dunlap and G. H. Lander, Phys. Rev. Letters 33 1046 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    M. S. S. Brooks and P. J. Kelly, to be published (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • G. H. Lander
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations