Shapes and Shape Phase Transitions in the Interacting Boson Model

  • A. E. L. Dieperink
  • O. Scholten
Part of the Ettore Majorana International Science Series book series (EMISS, volume 10)

Abstract

The interacting boson approximation (IBA) has been shown to provide a rather successful description of collective nuclear properties. Since the model is formulated in an elegant but rather abstract algebraic way its precise relation to geometrical models like the Bohr-Hamiltonian describing a liquid drop with quadrupole surface oscillations is by no means obvious. Up to now the connection with the geometrical approach has only been made indirectly: it has been inferred on the basis of the similarity of the expressions for energy levels and E2 transition rates that the three dynamical symmetries1,2,3 that occur in IBA, namely SU(5), SU(3) and O(6), correspond (for N → ∞) to the anharmonic vibrator, the axially symmetric rigid rotor and the gamma unstable rotor, respectively. To establish a more direct connection between the two pictures one needs to express the IBA hamiltonian in terms of shape variables, thus allowing one to associate a geometry with the IBA formulation.

Keywords

Coherent State Casimir Operator Dynamical Symmetry Transitional Region Trial Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Arima and F. Iachello, Ann. Phys. 99 (1976) 253.ADSCrossRefGoogle Scholar
  2. 2.
    A. Arima and F. Iachello, Ann. Phys. 111 (1978) 201.ADSCrossRefGoogle Scholar
  3. 3.
    A. Arima and F. Iachello, Ann. Phys. 123 (1979) 468.ADSCrossRefGoogle Scholar
  4. 4.
    R. Gilmore, J. Math. Phys. 20 (1979) 891,and references therein.Google Scholar
  5. 5.
    R. Gilmore and D.H. Feng, Nucl. Phys. A301 (1978) 189;MathSciNetCrossRefGoogle Scholar
  6. D.H. Feng, R. Gilmore and L.M. Narducci, Phys. Rev. C19 (1979) 1119.Google Scholar
  7. 6.
    H. Lipkin, N. Meshkov and A.J. Glick, Nucl. Phys. 62 (1965) 188.MathSciNetCrossRefGoogle Scholar
  8. 7.
    S. Levit, J.W. Negele and Z. Paltiel, Phys. Rev. C21 (1980) 1603.Google Scholar
  9. 8.
    P. Hoodboy and J.W. Negele, Phys. Rev. C18 (1978) 2380.Google Scholar
  10. 9.
    K. K. Kan, P.C. Lichtner, M. Dworzecka and J.J. Griffin, Phys. Rev. C21 (1980) 1098.Google Scholar
  11. 10.
    R. Gilmore, C.M. Bowden and L.M. Narducci, Phys. Rev. Al2 (1975) 1019.Google Scholar
  12. 11.
    J.N. Ginocchio and M.W. Kirson, Phys. Rev. Lett. 44 (1980) 1744.Google Scholar
  13. 12.
    A.E.L. Dieperink and O. Scholten, Nucl. Phys. A346 (1980) 125;MathSciNetCrossRefGoogle Scholar
  14. A.E.L. Dieperink, O. Scholten and F. Iachello, Phys. Rev. Lett. 44 (1980) 1098.Google Scholar
  15. 13.
    D. Cline, contribution to this conference.Google Scholar
  16. 14.
    D.H. Feng and R. Gilmore, Phys. Lett. 90B (1980) 327.Google Scholar
  17. 15.
    H. Kuratsuji and T. Suzuki, J. Math. Phys. 21 (1980) 472.MathSciNetADSCrossRefGoogle Scholar
  18. 16.
    O. van Roosmalen, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • A. E. L. Dieperink
    • 1
  • O. Scholten
    • 1
  1. 1.Kernfysisch Versneller InstituutUniversity of GroningenThe Netherlands

Personalised recommendations