Geometric and Dynamical Properties of the Interacting Boson Model

  • Robert Gilmore
  • Da Hsuan Feng
Part of the Ettore Majorana International Science Series book series (EMISS, volume 10)

Abstract

A continuous coordinate system is introduced to complement the discrete coordinate system used for the description of the Interacting Boson Model. The description of ground state energy phase transitions and dynamical processes are facilitated in this representation. The duality between the discrete and continuous representations can be used to compare nuclear models presented in either an algebraic or a geometric framework.

Keywords

Coherent State Ground State Energy Classical Limit Catastrophe Theory Quantum Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refefences

  1. 1.
    A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    A. Arima and F. Iachello, Ann. Phys. (N.Y.) 99, 253 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    A. Arima and F. Iachello, Ann. Phys. (N.Y.) 111: 201 (1978).Google Scholar
  4. 4.
    A. Arima and F. Iachello, Phys. Rev. Lett. 40: 385 (1978).Google Scholar
  5. 5.
    Scholten, F. Iachello, and A. Arima, Ann. Phys. (N.Y.) 115: 325 (1978).Google Scholar
  6. 6.
    R. Gilmore, “Lie Groups, Lie Algebras and Some of Their Applications”, Wiley, N.Y., 1974.MATHGoogle Scholar
  7. 7.
    R. Gilmore, in: “Journees Relativistes”, M. Cahan, R. Debever, and J. Geheniau, eds., Université Libre, Bruxelles, 1976, p. 71.Google Scholar
  8. 8.
    R.H. Dicke, Phys. Rev. 93: 99 (1954).Google Scholar
  9. 9.
    H.J. Lipkin, N. Meshkov, and A.J. Glick, Nucl. Phys. 62:188 (1965), 199(1965), 211(1965).Google Scholar
  10. 10.
    T. Poston and I.N. Stewart, “Catastrophe Theory and Its Applications”, Pitman, London, 1978.MATHGoogle Scholar
  11. 11.
    F.T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A6: 2211 (1972).Google Scholar
  12. 12.
    R. Gilmore, Ann. Phys. (N.Y.) 74: 391 (1972).Google Scholar
  13. 13.
    A.M. Perelomov, Commun. Math. Phys. 26: 22 (1972).Google Scholar
  14. 14.
    R. Gilmore, Rev. Mex. de Fisica 23: 143 (1974).Google Scholar
  15. 15.
    E.P. Wigner, “Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra”, Academic, N.Y., 1959.MATHGoogle Scholar
  16. 16.
    T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Phys. Lett. 76B: 139 (1978).Google Scholar
  17. 17.
    T. Otsuka, A.Arima, and F. Iachello, Nucl. Phys. A309: 1 (1978).Google Scholar
  18. 18.
    R. Gilmore, C.M. Bowden, and L.M. Narducci, Phys. Rev. Al2: 1019(1975).Google Scholar
  19. 19.
    A.E.L. Dieperink, 0.Scholten, and F. Iachello, Phys. Rev. Lett. 44: 1747 (1980).Google Scholar
  20. 20.
    J.N. Ginocchio and M.W. Kirson, Phys. Rev. Lett. 44: 1744 (1980).Google Scholar
  21. 21.
    I.M. Gel’fand and M.L. Tsetlein, Dokl. Akad. Naak. SSSR 71: 840(1950), 71: 1017 (1950).Google Scholar
  22. 22.
    F.T. Arecchi, R. Gilmore, and D.M. Kim, Lett. Nuovo Cimento 6: 219 (1973).Google Scholar
  23. 23.
    R.;Gilmore, J. Phys. A9:L65(1976).Google Scholar
  24. 24.
    R. Gilmore, J. Math. Phys. 20: 891 (1979).Google Scholar
  25. 25.
    R. Gilmore and D.H. Feng, Phys. Lett. 76B: 26 (1978).Google Scholar
  26. 26.
    R. Gilmore and D.H. Feng, Nucl. Phys. A301:189(1978); D.H. Feng, R. Gilmore and L.M. Narducci, Phys. Rev. C19: 1119 (1979).Google Scholar
  27. 27.
    P.A.M. Dirac, Proc. Camb. Phil. Soc. 26: 367 (1930).Google Scholar
  28. 28.
    D.H. Feng and R. Gilmore, Phys. Lett. 90B, 327 (1980).Google Scholar
  29. 29.
    R. Gilmore, “Catastrophe Theory for Scientists and Engineers”, Wiley, N.Y., 1981, Chapter 15.MATHGoogle Scholar
  30. 30.
    H. Kuratsuji and T. Suzuki, J. Math. Phys. 21: 472 (1980).Google Scholar
  31. 31.
    H. Kuratsuji and T. Suzuki, Kyoto University Preprint 514 (unpublished).Google Scholar
  32. 32.
    H. Kuratsuji and Y. Mizobuchi, Kyoto University Preprint 519 (unpublished).Google Scholar
  33. 33.
    V.P. Maslow, “Theorie des perturbations et methods asymptotiques”, Dunod, Paris, 1972.Google Scholar
  34. 34.
    V. Guillemin and S. Sternberg, “Geometric Asymptotics”, American Mathematical Society, Providence, 1977.MATHGoogle Scholar
  35. 35.
    V.I. Arnold, Fun. Aral. Appl. 1: 1 (1967).Google Scholar
  36. 36.
    A. Bohr and B.R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27: (no.16) (1953).Google Scholar
  37. 37.
    W. Heisenberg, Zeits. fur Phys. 33: 879 (1925).Google Scholar
  38. 38.
    E. Schrodinger, Ann. der Phys. 79: 361 (1926).Google Scholar
  39. 39.
    E. Schrodinger, Ann. der Phys. 79: 734 (1926).Google Scholar
  40. 40.
    R.P. Feynman, Rev. Mod. Phys. 20: 367 (1948).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Robert Gilmore
    • 1
  • Da Hsuan Feng
    • 2
  1. 1.Institute for Defense AnalysesArlingtonUSA
  2. 2.Department of Physics and Atmospheric ScienceDrexel UniversityPhiladelphiaUSA

Personalised recommendations