Clinical Pharmacodynamics of Cardiovascular Agents: Focus on Sudden Cardiac Death

  • Dan M. Roden


Sudden death due to ventricular tachyarrhythmias is common in patients with advanced coronary artery disease. Three strategies might be useful: slowing progression of coronary atherosclerosis (e.g. antihypertensive or lipid-lowering agents); antiarrhythmic therapy; or elimination of transient factors which trigger fatal arrhythmias (e.g. antiplatelet drugs or ß-blockers). For each of these classes of compounds, an easily measured response variable, such as heart rate, blood pressure, ECG interval, frequency of ambient arrhythmia, or bleeding time, is available and the links between drug concentrations and response are readily determined. However, the common extrapolation that these responses are necessarily accompanied by a decrease in sudden death is unfounded. In addition, patients who are at risk for sudden death have an underlying cardiac substrate which can fluctuate over seconds to years, resulting in both loss of drug efficacy and increased drug toxicity. Thus evaluation of interventions designed to reduce sudden death must be performed in patients at risk, using death as the study end-point. This approach also permits assessment of compounds whose only therapeutic action might be to reduce sudden death.


Sudden Death Parent Drug Antiarrhythmic Drug Poor Metabolizers Antiarrhythmic Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. L., J. R. Stewart, B. A. Perry, D. D. Van Hamersveld, T. A. Johnson, G. J. Conard, S. F. Chang, D. C. Kvam, and B. Pitt (1981). Oral flecainide acetate for the treatment of ventricular arrhythmias. N. Engl. J. Med., 305 473–477.PubMedCrossRefGoogle Scholar
  2. Barbey, J. T., K. A. Thompson, D. S. Echt, R. L. Woosley, and D. M. Roden (1988). Antiarrhythmic activity, electrocardiographic effects and pharmacokinetics of the encainide metabolites 0-desmethyl encainide and 3- methoxy-O-desmethyl encainide in man. Circulation, 77, 380–391.PubMedCrossRefGoogle Scholar
  3. Bennett, P. B., R. L. Woosley, and L. M. Hondeghem (1988). Competitive interactions of lidocaine (L) and one of its metabolites, glycine xylidide (GX), with cardiac sodium channels. Circulation, 78, 692–700.PubMedCrossRefGoogle Scholar
  4. Bigger J. T., Jr., J. L. Fleiss, R. Kleiger, J. P. Miller, L. M. Rolintzky, and Multicenter Post-Infarction Research Group (1984). The relationship among ventricular arrhythmias, left ventricular dysfunction, and mortality in the 2 years after myocardial infarction. Circulation, 69, 250–258.Google Scholar
  5. Birgersdotter, U. M., J. Turgeon, W. Wong, and D. M. Roden (1990). Stereoselective genetically-determined interaction of flecainide and quinidine. Clin. Res.,38, 339A.Google Scholar
  6. Drayer, D. E., D. T. Lowenthal, K. M. Restivo, A. Schwartz, and M. M. Reidenberg (1978). Steady state serum levels of quinidine and active metabolites in cardiac patients with varying degrees of renal function. Clin. Pharmacol. Ther.,24, 31–39.PubMedGoogle Scholar
  7. Echizen, H., B. Vogelgesang, and M. Eichelbaum (1985). Effects of d,l- verapamil on atrioventricular conduction in relation to its stereoselective first-pass metabolism. Clin. Pharmacol. Ther.,38, 71–76.PubMedCrossRefGoogle Scholar
  8. Echt, D. S., P. R. Liebson, B. Mitchell, R. W. Peters, D. Obias-Manno, A. H. Barker, A. Arensberg, A. Baker, L. Friedman, H. L. Greene, M. L. Huther, D. W. Richardson, and the CAST Investigators (1991). Mortality and morbidity in patients receiving encainide, flecainide, or placebo: The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med., 324, 781–788.PubMedCrossRefGoogle Scholar
  9. Eichelbaum, M., and A. S. Gross (1990). The genetic polymorphism of debrisoquine/sparteine metabolism-clinical aspects. Pharmacol. Ther.,46, 377–394.PubMedCrossRefGoogle Scholar
  10. Eichelbaum, M., G. Mikus, and B. Vogelgesang (1984). Pharmacokinetics of (+)-,(-)-and(±)-verapamil after intravenous administration. Br. J. Clin. Pharmacol.,17, 453–458.PubMedCrossRefGoogle Scholar
  11. Fain, E. S., P. Dorian, J-M. Davy, R. E. Kates, and R. A. Winkle (1986). Effects of encainide and its metabolites on energy requirements for defibrillation. Circulation, 73, 1334–1341.PubMedCrossRefGoogle Scholar
  12. Funck-Brentano, C., H. K. Kroemer, R. L. Woosley, and D. M. Roden (1989). Genetically-determined interaction between propafenone and low dose quinidine: role of active metabolites in modulating net drug effect. Br. J. Clin. Pharmacol.,27, 435–444.PubMedCrossRefGoogle Scholar
  13. Holford, N. H. G., P. E. Coates, T. W. Guentert, S. Riegelman, and L. B. Sheiner (1981). The effect of quinidine and its metabolites on the electrocardiogram and systolic time intervals: concentration-effect relationships. Br. J. Clin. Pharmacol.,11, 187–195.PubMedCrossRefGoogle Scholar
  14. Hondeghem, L. M. (1987). Antiarrhythmic agents: modulated receptor applications. Circulation 75, 514–520.PubMedCrossRefGoogle Scholar
  15. Hondeghem, L. M., and D. J. Snyders (1990). Class III antiarrhythmic agents have a lot of potential, but a long way to go: reduced effectiveness and dangers of reverse use-dependence. Circulation, 81, 686–690.PubMedCrossRefGoogle Scholar
  16. Kroemer, H. K., C. Funck-Brentano, D. J. Silberstein, A. J. J. Wood, M. Eichelbaum, R. L. Woosley, and D. M. Roden (1989). Stereoselective disposition and pharmacological activity of propafenone enantiomers. Circulation, 79, 1068–1076.PubMedCrossRefGoogle Scholar
  17. Lee, J. T., H. T. Kroemer, D. Silberstein, C. Funck-Brentano, M. D. Lineberry, A. J. J. Wood, D. M. Roden, and R. L. Woosley (1990). Genetically determined polymorphism of propafenone metabolism accounts for variable beta-blockade in man. N. Engl. J. Med., 322,1764–1768.PubMedCrossRefGoogle Scholar
  18. LeLorier, J., D. Grenon, Y. Latour, G. Caillé, G. Dumont, A. Brosseau, and A. Solignac (1977). Pharmacokinetics of lidocaine after prolonged intravenous infusions in uncomplicated myocardial infarction. Ann. Int. Med.,87, 700–702.PubMedCrossRefGoogle Scholar
  19. Mikus, G., A. S. Gross, J. Beckmann, R. Hertrampf, U. Gundert-Remy, and M. Eichelbaum (1989). The influence of the sparteine/debrisoquin phenotype on the disposition of flecainide. Clin. Pharmacol. Ther,45, 562–567.PubMedCrossRefGoogle Scholar
  20. Platia, E. V., R. W. Henthorn, Y. Pawitan, T. A. Buckingham, M. D. Carlson, J. L. Anderson, P. E. Carson, and CAST Investigators (1991). Cardiac Arrhythmia Suppression Trial (CAST): Baseline predictors of highest mortality. JACC, 17, 230A.CrossRefGoogle Scholar
  21. Roden, D. M. (1988). Encainide and related antiarrhythmic drugs. ISI Atlas of Science 374–380.Google Scholar
  22. Roden, D. M. (1990). Clinical features of arrhythmia aggravation by antiarrhythmic drugs and their implications for basic mechanisms. Drug Dev. Res.,19, 153–172.CrossRefGoogle Scholar
  23. Roden, D. M., A. J. J. Wood, G. R. Wilkinson, and R. L. Woosley (1986). Disposition kinetics of encainide and metabolites. Am. J. Cardiol.,58, 4C- 9C.CrossRefGoogle Scholar
  24. Roden, D. M., S. B. Reele, S. B. Higgins, R. Mayol, R. Gammans, J. A. Oates, and R. L. Woosley (1980). Total suppression of ventricular arrhythmias by encainide. N. Engl. J. Med., 302 877–882.PubMedCrossRefGoogle Scholar
  25. Ruberman, W., E. Weinblatt, J. D. Goldberg, C. W. Frank and S. Shapiro (1977). Ventricular premature beats and mortality after myocardial infarction. N. Engl. J. Med.,297, 750–757.PubMedCrossRefGoogle Scholar
  26. Schulze, R. A., J. O. Humphries, L. S. C. Griffith, and others (1977). Left ventricular and coronary angiographic anatomy. Relationship to ventricular irritability in the late hospital phase of acute myocardial infarction. Circulation, 55, 839–843.PubMedCrossRefGoogle Scholar
  27. Siddoway, L.A., K. A. Thompson, C. B. McAllister, T. Wang, G. R. Wilkinson, D. M. Roden, and R. L. Woosley (1987). Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation, 75, 785–791.PubMedCrossRefGoogle Scholar
  28. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators (1989). Preliminary report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J. Med.,321, 406–412.CrossRefGoogle Scholar
  29. Thompson, K. A., I. A. Blair, R. L. Woosley, and D. M. Roden (1987). Comparative electrophysiologic effects of quinidine, its major metabolites and dihydroquinidine in canine cardiac Purkinje fibers. J. Pharmacol. Exp. Ther., 241 84–90.PubMedGoogle Scholar
  30. Thompson, K. A., D. H. S. Iansmith, L. A. Siddoway, R. L. Woosley, and D. M. Roden (1988a). Potent electrophysiologic effects of the major metabolites of propafenone in canine Purkinje fibers. J. Pharmacol. Exp. Ther.,244, 950–955.Google Scholar
  31. Thompson, K. A., J. J. Murray, I. A. Blair, R. L. Woosley, and D. M. Roden (1988b). Plasma concentrations of quinidine, major metabolites, and dihydroquinidine in patients with Torsades de Pointes. Clin. Pharmacol. Ther.,43, 636–642.PubMedCrossRefGoogle Scholar
  32. Turgeon, J., K. T. Murray, and D. M. Roden (1990). Effects of drug metabolism, metabolites and stereoselectivity on antiarrhythmic drug action. J. Cardiovasc. Electrophysiol.,1, 238–260.CrossRefGoogle Scholar
  33. Wong, W., H. N. Pavlou, and D. M. Roden (1989). Pharmacology of sematilide, a class III procainamide analog, in man. 62nd Annual Scientific Sessions, American Heart Association. Circulation, 80, SII-326.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Dan M. Roden
    • 1
  1. 1.Departments of Medicine and PharmacologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations