Equation of State at T = 0. Method of Potentials

  • V. N. Zharkov
  • V. A. Kalinin


The solid state of matter differs from the gaseous and liquid states by a more compact and symmetrical distribution of atoms. The distance between the atoms in a solid is of the order of the atomic diameters and considerable forces act within a solid. At the very short interatomic distances found in solids, we must take into account not only the interaction of the nucleus and electrons within each atom but also the interaction between the nuclei and electrons of different atoms. A solid is a very complex quantum-mechanical system and, therefore, no systematic and consistent theoretical calculations can be carried out without some approximations. It is usual to consider models which differ from the real system by certain restrictions that are imposed on them. These restrictions can differ from problem to problem but they should apply, whenever possible, to the secondary processes which do not alter basically the main properties of the solid in question.


Bulk Modulus Interatomic Distance Valence Electron Repulsive Force Attractive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press (1954).Google Scholar
  2. 2.
    J. C. Slater, Phys. Rev., 32: 339 (1928).ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    V. A. Kalinin, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 2, p. 333 (1960).Google Scholar
  4. 4.
    P. E. Phillipson, Phys. Rev., 125: 1981 (1962).Google Scholar
  5. 5.
    H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Oxford University Press (1952).Google Scholar
  6. 6.
    V. P. Trubitsyn, Fiz. Tverd. Tela, 7: 3443 (1965).Google Scholar
  7. 7.
    M. Born and J. Mayer, Z. Physik, 75: 1 (1932).ADSCrossRefGoogle Scholar
  8. 8.
    B. I. Davydov, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 12, p. 1411 (1956).Google Scholar
  9. 9.
    F. Seitz, Modern Theory of Solids, McGraw-Hill, New York (1940).zbMATHGoogle Scholar
  10. 10.
    V. A. Kalinin, Trudy Inst. Fiziki Zemli Akad, Nauk SSSR, No. 11 (178), p. 67 (1960).Google Scholar
  11. 11.
    C. Kittel, Introduction to Solid State Physics, 3rd ed., Wiley, New York (1966).Google Scholar
  12. 12.
    V. N. Zharkov, Trudy Inst. Fiziki Zemli Akad. Nauk SSSR, No. 11 (178), p. 14 (1960).Google Scholar
  13. 13.
    V. N. Zharkov and V. A. Kalinin, Dokl. Akad. Nauk SSSR, 135: 811 (1960).Google Scholar
  14. 14.
    V. N. Zharkov and V. A. Kalinin, Dokl. Akad, Nauk SSSR, 145: 551 (1962).Google Scholar
  15. 15.
    V. N. Zharkov and V. A. Kalinin, Izv. Akad. Nauk SSSR, Ser, Geofiz., No. 3, p. 298 (1962).Google Scholar
  16. 16.
    V. N. Zharkov, Trudy Inst. Fiziki Zemli Akad. Nauk SSSR, No. 20(187), p. 3 (1962).Google Scholar
  17. 17.
    V. A. Kalinin, “Equations of state for solids at high pressures and their applications to some geophysics problems,” Dissertation for Candidate’s Degree [in Russian], Moscow (1963).Google Scholar
  18. 18.
    V. N. Zharkov, “Investigations in geophysics,” Doctoral Dissertation [in Russian], Moscow (1964).Google Scholar
  19. 19.
    L. V. Al’tshuler, L. V. Kuleshova, and M. N. Pavlovskii, Zh. Eksp. Teor. Fiz., 39: 16 (1960).Google Scholar
  20. 20.
    L. V. Al’tshuler, M. N. Pavlovskii, L. V. Kuleshova, and G. V. Simakov, Fiz. Tverd. Tela, 5: 279 (1963).Google Scholar
  21. 21.
    L. V. Al’tshuler, A. A. Bakanova, and R. F. Trunin, Zh, Eksp. Teor. Fiz., 42:91 (1962)).Google Scholar
  22. 22.
    L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd ed., Cornell University Press, New York (1960).Google Scholar
  23. 23.
    D. R. Hartree, The Calculation of Atomic Structures, Wiley, New York (1957).zbMATHGoogle Scholar
  24. 24.
    F. Birch, J. Geophys. Res., 57:227, (1952).Google Scholar
  25. 25.
    F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York (1951).zbMATHGoogle Scholar
  26. 26.
    W. Prager, Introduction to Mechanics of Continua, Ginn and Co., Boston (1961).zbMATHGoogle Scholar
  27. 27.
    G. Mie, Ann. Physik, 11: 657 (1903).ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    E, Grüneisen, Ann, Physik, 26: 393 (1908).ADSCrossRefGoogle Scholar
  29. 29.
    M. Born, Atomtheorie des festen Zustandes, Teubner, Leipzig (1923).CrossRefGoogle Scholar
  30. 30.
    J. C. Slater, Phys. Rev., 23: 488 (1924).ADSCrossRefGoogle Scholar
  31. 31.
    J. E. Lennard-Jones, Proc. Roy. Soc. (London), A106: 441, 463, 709 (1924).CrossRefGoogle Scholar
  32. 32.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, 2nd ed., Pergamon Press, Oxford (1968).Google Scholar
  33. 33.
    L. Pauling, Z. Krist., 67:377 (1928).Google Scholar
  34. 34.
    H. S. W. Massey and C. B. O. Mohr, Proc. Roy, Soc. (London), A144: 188 (1934).ADSCrossRefGoogle Scholar
  35. 35.
    V. A. Kalinin, Zh. Éksp. Teor. Fiz., 34: 229 (1958).Google Scholar
  36. 36.
    J. Bardeen, J. Chem. Phys., 6: 367 (1938).ADSCrossRefGoogle Scholar
  37. 37.
    M. Born and M. Goeppert-Mayer, in: Handbuch der Physik, Vol. 24, Part 2, Ch. IV, Springer-Verlag, Berlin (1933), p. 623.Google Scholar
  38. 38.
    M. Bradburn, Proc. Cambridge Phil. Soc., 39: 113 (1943).MathSciNetzbMATHGoogle Scholar
  39. 39.
    R. D. Misra, Proc. Cambridge Phil. Soc., 36: 173 (1940).zbMATHGoogle Scholar
  40. 40.
    R. Fürth, Proc. Roy. Soc. (London), A183: 87 (1944).CrossRefGoogle Scholar
  41. 41.
    D. C. Pack, W. M. Evans, and H. J. James, Proc. Phys. Soc. (London), 60: 1 (1948).ADSCrossRefGoogle Scholar
  42. 42.
    F. E. Prieto, Phys. Rev., 129: 37 (1963).ADSCrossRefGoogle Scholar
  43. 43.
    M. Kornfel’d, Usp. Fiz. Nauk, 54: 315 (1954).CrossRefGoogle Scholar
  44. 44.
    Yu. N. Ryabinin, Zh. Tekh. Fiz., 30: 739 (1960).Google Scholar
  45. 45.
    S. B. Kormer and V. D. Urlin, Dokl. Akad. Nauk SSSR, 131: 542 (1960).Google Scholar
  46. 46.
    S. B. Kormer, V. D. Urlin, and L. T. Popova, Fiz, Tverd. Tela, 3: 2131 (1961).Google Scholar
  47. 47.
    S. B. Kormer, A. I. Funtikov, V. D. Urlin, and A. N. Kolesnikova, Zh. Éksp. Teor. Fiz., 42: 686 (1962).Google Scholar
  48. 48.
    S. B. Kormer, M. V. Sinitsyn, A. I. Funtikov, V. D. Urlin, and A. V. Blinov, Zh. Éksp. Teor. Fiz., 47: 1202 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • V. N. Zharkov
    • 1
  • V. A. Kalinin
    • 1
  1. 1.Laboratory of Theoretical Physics, O. Yu. Shmidt Institute of Physics of EarthAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations