Skip to main content
  • 251 Accesses

Abstract

The solid state of matter differs from the gaseous and liquid states by a more compact and symmetrical distribution of atoms. The distance between the atoms in a solid is of the order of the atomic diameters and considerable forces act within a solid. At the very short interatomic distances found in solids, we must take into account not only the interaction of the nucleus and electrons within each atom but also the interaction between the nuclei and electrons of different atoms. A solid is a very complex quantum-mechanical system and, therefore, no systematic and consistent theoretical calculations can be carried out without some approximations. It is usual to consider models which differ from the real system by certain restrictions that are imposed on them. These restrictions can differ from problem to problem but they should apply, whenever possible, to the secondary processes which do not alter basically the main properties of the solid in question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press (1954).

    Google Scholar 

  2. J. C. Slater, Phys. Rev., 32: 339 (1928).

    Article  ADS  MATH  Google Scholar 

  3. V. A. Kalinin, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 2, p. 333 (1960).

    Google Scholar 

  4. P. E. Phillipson, Phys. Rev., 125: 1981 (1962).

    Google Scholar 

  5. H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Oxford University Press (1952).

    Google Scholar 

  6. V. P. Trubitsyn, Fiz. Tverd. Tela, 7: 3443 (1965).

    Google Scholar 

  7. M. Born and J. Mayer, Z. Physik, 75: 1 (1932).

    Article  ADS  Google Scholar 

  8. B. I. Davydov, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 12, p. 1411 (1956).

    Google Scholar 

  9. F. Seitz, Modern Theory of Solids, McGraw-Hill, New York (1940).

    MATH  Google Scholar 

  10. V. A. Kalinin, Trudy Inst. Fiziki Zemli Akad, Nauk SSSR, No. 11 (178), p. 67 (1960).

    Google Scholar 

  11. C. Kittel, Introduction to Solid State Physics, 3rd ed., Wiley, New York (1966).

    Google Scholar 

  12. V. N. Zharkov, Trudy Inst. Fiziki Zemli Akad. Nauk SSSR, No. 11 (178), p. 14 (1960).

    Google Scholar 

  13. V. N. Zharkov and V. A. Kalinin, Dokl. Akad. Nauk SSSR, 135: 811 (1960).

    Google Scholar 

  14. V. N. Zharkov and V. A. Kalinin, Dokl. Akad, Nauk SSSR, 145: 551 (1962).

    Google Scholar 

  15. V. N. Zharkov and V. A. Kalinin, Izv. Akad. Nauk SSSR, Ser, Geofiz., No. 3, p. 298 (1962).

    Google Scholar 

  16. V. N. Zharkov, Trudy Inst. Fiziki Zemli Akad. Nauk SSSR, No. 20(187), p. 3 (1962).

    Google Scholar 

  17. V. A. Kalinin, “Equations of state for solids at high pressures and their applications to some geophysics problems,” Dissertation for Candidate’s Degree [in Russian], Moscow (1963).

    Google Scholar 

  18. V. N. Zharkov, “Investigations in geophysics,” Doctoral Dissertation [in Russian], Moscow (1964).

    Google Scholar 

  19. L. V. Al’tshuler, L. V. Kuleshova, and M. N. Pavlovskii, Zh. Eksp. Teor. Fiz., 39: 16 (1960).

    Google Scholar 

  20. L. V. Al’tshuler, M. N. Pavlovskii, L. V. Kuleshova, and G. V. Simakov, Fiz. Tverd. Tela, 5: 279 (1963).

    Google Scholar 

  21. L. V. Al’tshuler, A. A. Bakanova, and R. F. Trunin, Zh, Eksp. Teor. Fiz., 42:91 (1962)).

    Google Scholar 

  22. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd ed., Cornell University Press, New York (1960).

    Google Scholar 

  23. D. R. Hartree, The Calculation of Atomic Structures, Wiley, New York (1957).

    MATH  Google Scholar 

  24. F. Birch, J. Geophys. Res., 57:227, (1952).

    Google Scholar 

  25. F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York (1951).

    MATH  Google Scholar 

  26. W. Prager, Introduction to Mechanics of Continua, Ginn and Co., Boston (1961).

    MATH  Google Scholar 

  27. G. Mie, Ann. Physik, 11: 657 (1903).

    Article  ADS  MATH  Google Scholar 

  28. E, Grüneisen, Ann, Physik, 26: 393 (1908).

    Article  ADS  Google Scholar 

  29. M. Born, Atomtheorie des festen Zustandes, Teubner, Leipzig (1923).

    Book  Google Scholar 

  30. J. C. Slater, Phys. Rev., 23: 488 (1924).

    Article  ADS  Google Scholar 

  31. J. E. Lennard-Jones, Proc. Roy. Soc. (London), A106: 441, 463, 709 (1924).

    Article  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Statistical Physics, 2nd ed., Pergamon Press, Oxford (1968).

    Google Scholar 

  33. L. Pauling, Z. Krist., 67:377 (1928).

    Google Scholar 

  34. H. S. W. Massey and C. B. O. Mohr, Proc. Roy, Soc. (London), A144: 188 (1934).

    Article  ADS  Google Scholar 

  35. V. A. Kalinin, Zh. Éksp. Teor. Fiz., 34: 229 (1958).

    Google Scholar 

  36. J. Bardeen, J. Chem. Phys., 6: 367 (1938).

    Article  ADS  Google Scholar 

  37. M. Born and M. Goeppert-Mayer, in: Handbuch der Physik, Vol. 24, Part 2, Ch. IV, Springer-Verlag, Berlin (1933), p. 623.

    Google Scholar 

  38. M. Bradburn, Proc. Cambridge Phil. Soc., 39: 113 (1943).

    MathSciNet  MATH  Google Scholar 

  39. R. D. Misra, Proc. Cambridge Phil. Soc., 36: 173 (1940).

    MATH  Google Scholar 

  40. R. Fürth, Proc. Roy. Soc. (London), A183: 87 (1944).

    Article  Google Scholar 

  41. D. C. Pack, W. M. Evans, and H. J. James, Proc. Phys. Soc. (London), 60: 1 (1948).

    Article  ADS  Google Scholar 

  42. F. E. Prieto, Phys. Rev., 129: 37 (1963).

    Article  ADS  Google Scholar 

  43. M. Kornfel’d, Usp. Fiz. Nauk, 54: 315 (1954).

    Article  Google Scholar 

  44. Yu. N. Ryabinin, Zh. Tekh. Fiz., 30: 739 (1960).

    Google Scholar 

  45. S. B. Kormer and V. D. Urlin, Dokl. Akad. Nauk SSSR, 131: 542 (1960).

    Google Scholar 

  46. S. B. Kormer, V. D. Urlin, and L. T. Popova, Fiz, Tverd. Tela, 3: 2131 (1961).

    Google Scholar 

  47. S. B. Kormer, A. I. Funtikov, V. D. Urlin, and A. N. Kolesnikova, Zh. Éksp. Teor. Fiz., 42: 686 (1962).

    Google Scholar 

  48. S. B. Kormer, M. V. Sinitsyn, A. I. Funtikov, V. D. Urlin, and A. V. Blinov, Zh. Éksp. Teor. Fiz., 47: 1202 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zharkov, V.N., Kalinin, V.A. (1971). Equation of State at T = 0. Method of Potentials. In: Equations of State for Solids at High Pressures and Temperatures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1517-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1517-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1519-4

  • Online ISBN: 978-1-4757-1517-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics