Skip to main content

Modelling Hemodynamics in Small Tubes (Hollow Fibers) Considering Non-Newtonian Blood Properties and Radial Hematocrit Distribution

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 193))

Abstract

Velocity profiles and capillary volumetric flow were deduced from Navier-Stokes-equation accounting the non-Newtonian blood viscosity and its hematocrit dependence. Special attention was paled to the influence of the radial hematocrit distribution on radial flow pattern and the axial pressure drop.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Aarts, P.A., 1985, “The role of hemodynamic factors in the interaction of blood platelets with the vessel wall”, Proefschrift, Rijksuniversiteit, Utrecht, The Netherlands.

    Google Scholar 

  • Cokelet, R.G, 1987, The rheology and tube flow of blood, in: “Handbook of Bioengineering”, R. Skalak and S. Chien (eds.), McGraw-Hill Book Company, New York.

    Google Scholar 

  • Pufaux,J., Quemada, D., and Mills, P., 1980, Determination of rheological properties of red blood cells by Couvette viscometry, Rev. Phys. Appl., 15: 1367.

    Article  Google Scholar 

  • Fenton, B.M., Wilson, D.W., and Cokelet, G.R., 1985, Analysis of the effects of measured white blood cell entrance times on hemodynamics in a computer model of a micro-vascular bed, Pflügers Arch. 403: 396.

    Article  CAS  PubMed  Google Scholar 

  • Flaud, P., and Quemada, D., 1980, Role des effets non newtoniens dans l’ecoulement pulse d’un fluide dans un tuyau viscoelastique, Rev. Phys. Appl., 15: 749.

    Article  CAS  Google Scholar 

  • Lerche, D., Dufaux, J., Quemada, D., and Glaser,R., 1980, Rheological characterization of washed red blood cell suspensions in dependence on the medium human albumin concentration, in: “Proceedings of the 1. European Symposium on Hemorheology and Diseases”, J. Stoltz and P. Drouin (eds.), Doin Editeurs, Paris.

    Google Scholar 

  • Lerche, D., and Lüders, H., 1987, Modulation of tube velocity profiles and hematocrit depending non-Newtonian blood properties, in: “Microcirculation - an update.”, M. Tsuchiya, M. Asano, Y. Mishima and M. Oda (eds.), Elsevier Science Publishers B. V., Amsterdam.

    Google Scholar 

  • Lerche, D., and Oelke, R., 1990, Theoretical model of blood flow through hollow fibers considering hematocrit-dependent non-Newtonian blood properties, Int. J. Artificial Organs, in press.

    Google Scholar 

  • Nobis, U., Pries, A.R., Cokelet, G.R., and Gaehtgens, P., 1985, Radial distribution of white cells during blood flow in small tubes, Microvasc. Res., 29: 295.

    Article  CAS  PubMed  Google Scholar 

  • Perkkiö, J., and Keskinen, R., 1983, On the effect of the concentration profile of red cells on blood flow in the artery with stenosis, Bull. Math. Biol. 45: 259.

    Article  PubMed  Google Scholar 

  • Pries, A.R., Ley, K., Claassen, M., and Gaehtgens, P., 1989, Red cell distribution at microvascular bifurcations, Microvasc. Res., 38: 81.

    Article  CAS  PubMed  Google Scholar 

  • Quemada, D., 1981, A rheological model for studying the hematocrit dependence of red cell - red cell interaction in blood, Biorheol., 18: 501.

    CAS  Google Scholar 

  • Tangelder, G.J., Slaaf, D.W., Muijtjens, A.M.M., Arts, T., Egbrink, M.G.A., and Reneman, R.S., 1986, Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery, Circ. Res., 59: 505.

    Article  CAS  PubMed  Google Scholar 

  • Van Steenhoven, A.A., Rindt, C.C.M., Janssen, J.D., and Rene-man, R.S., 1990, Numerical and experimental analysis of carotid artery blood flow, cp. this volume.

    Google Scholar 

  • Weizel, W., 1949, “Lehrbuch der Theoretischen Physik”, Springer Verlag, Berlin, Göttingen, Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lerche, D. (1990). Modelling Hemodynamics in Small Tubes (Hollow Fibers) Considering Non-Newtonian Blood Properties and Radial Hematocrit Distribution. In: Mosora, F., Caro, C.G., Krause, E., Schmid-Schönbein, H., Baquey, C., Pelissier, R. (eds) Biomechanical Transport Processes. NATO ASI Series, vol 193. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1511-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1511-8_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1513-2

  • Online ISBN: 978-1-4757-1511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics