The Vitamin D Endocrine System and Bone

  • Anthony W. Norman
Part of the NATO ASI Series book series (NSSA, volume 184)


Vitamin D is generally accepted as being essential for life in higher animals. It is one of the most important biological regulators of calcium and phosphorus metabolism. Along with the two peptide hormones PTH and calcitonin, vitamin D is responsible for the minute-to-minute as well as the day-to-day establishment and maintenance of calcium homeostasis.


Endocrine System Multinucleated Cell Mouse Bone Marrow Mouse Bone Marrow Culture Avian Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Review Articles

  1. 1.
    Reichel, H., H. P. Koeffler and A. W. Norman. The role of the vitamin D endocrine system in health and disease. New Engl. J. Med. 320: 980–991 (1989).Google Scholar
  2. 2.
    Minghetti, P. P. and A. W. Norman. 1,25(OH)2-vitamin D3 receptors: Gene regulation and genetic circuitry. FASEB J. 2, 3043–3053 (1988).PubMedGoogle Scholar
  3. 3.
    Norman, A. W. and H. Reichel. Effects of la,25dihydroxyvitamin D3 on leukemia cells. ISI Atlas Science 1, 249–253 (1988).Google Scholar
  4. 4.
    Henry, H. L. and A. W. Norman. Vitamin D: Metabolism and biological actions. Ann. Rev. Nutr. 4, 493–520 (1984).CrossRefGoogle Scholar
  5. 5.
    Haussler, M. R. Vitamin D receptors: Nature and function. Ann. Rev. Nutr. 6, 527–562 (1986).CrossRefGoogle Scholar
  6. 6.
    Brometage, R. and H. F. DeLuca. Evidence that 1,25dihydroxyvitamin D3 is the physiologically active metabolite of vitamin D3. Endocr. Rev. 6, 491–511 (1985).Google Scholar
  7. 7.
    Norman, A. W., J. Roth and L. Orci. The vitamin D endocrine system: Steroid metabolism, hormone receptors and biological response (calcium binding proteins). Endocr. Rev. 3, 331–366 (1982).Google Scholar
  8. 8.
    Rigby, W. F. C. The immunobiology of vitamin D. Immunol. Today 9, 54–58 (1988).Google Scholar
  9. 9.
    Norman, A. W. (1979) Vitamin D: The Calcium Homeostatic Steroid Hormone, Academic Press, New York, 490 pp.Google Scholar
  10. 10.
    Norman, A. W. (1984) The role of receptors in mediating the biological responses to 1,25-dihydroxyvitamin D3-the hormonally active form of vitamin D, p. 479–493. In, J. A. Gustafsson and H. Eriksson (eds.), Steroid Hormone Receptors: Structure and Function, Elsevier Biomedical Press, Amsterdam, The Netherlands.Google Scholar
  11. 11.
    Pike, J. W. Intracellular receptors mediate the biological action of 1,25-dihydroxyvitamin D3. Nutr. Rev. 43, 161–168 (1985).Google Scholar

Research Papers

  1. 12.
    Wilhelm, F., A. W. Norman. Studies on the mode of action of calciferol. LVI. Biochemical characterization of positive cooperativity in the binding of la,25dihydroxyvitamin D3 to its chick intestinal crude chromatin receptor. J. Biol. Chem. 260, 10087–10092 (1985).Google Scholar
  2. 13.
    Green, S., P. Chambon. A superfamily of potentially oncogenic hormone receptors. Nature 324, 615–617 (1986).PubMedCrossRefGoogle Scholar
  3. 14.
    Giguere, V, N. Yang, P. Segui and R. M. Evans. Identification of a new class of steroid hormone receptors. Nature 331, 91–94; 1988.PubMedCrossRefGoogle Scholar
  4. 15.
    Arriza, J. L., C. Weinberger, G. Cerelli, T. M. Glaser, B. L. Handelin, D. E. Housman, and R. M. Evans. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237, 268–275 (1987).PubMedCrossRefGoogle Scholar
  5. 16.
    Petkovich, M., N. J. Brand, A. Krust and P. A. Chambon. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330, 444–450 (1987).PubMedCrossRefGoogle Scholar
  6. 17.
    McDonnell, D. P., D. J. Mangelsdorf, J. W. Pike, M. R. Haussler and B. W. O’Malley. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235, 1214–1217 (1987).PubMedCrossRefGoogle Scholar
  7. 18.
    Miller, J., A. D. McLachlan and A. Klug. Repetitive zinc-binding domains in the protein transcription factor IIIA from xenopus oocytes. The EMBO J. 4, 1609–1614 (1985).Google Scholar
  8. 19.
    Pike, J.W. and N. W. Sleator. Hormone-dependent phosphorylation of the 1,25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem. Biophvs. Res. Commun. 131, 378–385 (1985).Google Scholar
  9. 20.
    Theofan, G., A. P. Nguyen and A. W. Norman. Regulation of calbindin-D28K gene expression by 1,25-dihydroxyvitamin D3 is correlated to receptor occupancy. J. Biol. Chem. 261, 16943–16947 (1986).Google Scholar
  10. 21.
    Ishizuka, S., N. Kurihara, S. Hakeda, N. Maeda, K. Ikeda, M. Kumegawa and A. W. Norman. la,25-Dihydroxyvitamin D3 [1a,25-(OH)2D3]-26,23-lactone inhibits 1,25(OH)2D3-mediated fusion of mouse bone marrow mononuclear cells. Endocrinology 123, 781–786 (1988).PubMedCrossRefGoogle Scholar
  11. 22.
    Okamura, W. H., A. W. Norman and R. M. Wing. Vitamin D: concerning the relationship between molecular topology and biological function. Proc. Natl. Acad. Sci. USA 71, 4194–4197 (1974).Google Scholar
  12. 23.
    Haussler, M. R. and A. W. Norman. Chromosomal receptor for a vitamin D metabolite. Proc. Natl. Acad. Sci. USA 62, 155–162 (1969).Google Scholar
  13. 24.
    Ishizuka, S., J. Oshida, H. Tsuruta and A. W. Norman. The stereochemical configuration of the natural la,25dihydroxyvitamin D3–26,23-lactone. Arch. Biochem. Biophvs. 242, 82–89 (1985).CrossRefGoogle Scholar
  14. 25.
    Ishizuka, S. and A. W. Norman. The difference of biological activity among four diastereoisomets of la, 25-dihydroxyvitamin D3–26,23-lactone. J. Steroid Biochem. 25, 505 (1986).CrossRefGoogle Scholar
  15. 26.
    Merke, J. and A. W. Norman. Studies on the mode of action of calciferol. XXXII. Evidence for a 24(R),25(OH)2-vitamin D3 receptor in the parathyroid gland of the rachitic chick. Biochem. Biophys. Res. Commun. 100, 551 (1981).Google Scholar
  16. 27.
    Abe, E., C. Miyaura, H. Sakagami, M. Takeda, K. Konno et al. Differentiation of mouse myeloid leukemia cells induced by la,25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA 78, 49904994 (1981).Google Scholar
  17. 28.
    Mangelsdorf, D. J., H. P. Koeffler, C. A. Donaldson, J. W. Pike and M. R. Haussler. 1, 25-Dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60). Receptor-mediated maturation to macrophage-like cells. J. Cell Biol. 98, 391 (1984).PubMedCrossRefGoogle Scholar
  18. 29.
    Provvedini, D. M., K. D. Tsoukas, L. J. Deftos and S. C. Manolagas. 1,25-Dihydroxyvitamin D3 receptors in human leukocytes. Science 221, 1181–1183 (1983).PubMedCrossRefGoogle Scholar
  19. 30.
    Reichel, H., H. P. Koeffler, A. Tobler and A. W. Norman. la,25-Dihydroxyvitamin D3 inhibits interferon-7 synthesis by normal human peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 84, 3385–3389 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Anthony W. Norman
    • 1
  1. 1.Division of Biomedical Sciences and Department of BiochemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations