Biochemistry of the Intercellular Matrix in Cartilage Calcification

  • Benedetto de Bernard
  • Franco Vittur
Part of the NATO ASI Series book series (NSSA, volume 184)


Calcification is a process which takes place in the extracellular matrix, although strictly dependent on the biochemical activity of cells.


Hyaluronic Acid Nasal Septum Matrix Vesicle Cartilage Calcification Epiphyseal Cartilage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akisaka T. and Gay C.V. 1985. Ultrastructural localisation of calcium activated adenosin triphosphatase (Ca2+ -ATPase) in growth plate cartilage. J. Histochem. Cytochem. 33, 925.PubMedCrossRefGoogle Scholar
  2. Anderson H.C. 1985. Matrix vesicles calcification: Review and update. Bone and Mineral Res. 3, 109.Google Scholar
  3. de Bernard B. 1982. Glycoproteins in the local mechanism of calcification. Clin. Orthop. Rel. Res. 162, 233.Google Scholar
  4. de Bernard B., Stagni N., Coluatti I., Vittur F. and Bonucci E. 1977. Glycosaminoglycans and endochondral calcification. Clin. Orthop. Rel. Res. 126, 285.Google Scholar
  5. de Bernard B., Bianco P., Bonucci P., Costantini M., Lunazzi G.C., Martinuzzi P, Modricky C., Moro L., Panfili E., Pollesello P., Stagni N. and Vittur F. 1986. Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca binding glycoprotein. J. Cell Biol. 103, 1615.PubMedCrossRefGoogle Scholar
  6. Bonucci E. 1967. Fine structure of early cartilage calcification. J. Ultrastruct. Res. 20, 33.PubMedCrossRefGoogle Scholar
  7. Bonucci E. 1987. Is there a calcification factor common to all calcifying matrices? Scanning Microscopy 1, 1089.PubMedGoogle Scholar
  8. Bonucci E. and Reurink J. 1978. The fine structure of decalcified cartilage and bone: a comparison between decalcification procedures performed before and after embedding. Calcif. Tissue Res. 25, 179.PubMedCrossRefGoogle Scholar
  9. Boskey A.L. 1978. The role of calcium-phospholipid-phosphate complexes in tissue mineralisation. Met. Bone Dis. 1, 137.CrossRefGoogle Scholar
  10. Buckwalter J.A., Rosenberg L.C. and Ungar R. 1987. Changes in proteoglycan aggregates during cartilage mineralization. Calcif. Tissue Int. 41, 228.Google Scholar
  11. Campo T.D. and Romano J.E. 1986. Changes in cartilage proteoglycans associated with calcification. Calcif. Tissue Int. 39, 175.PubMedCrossRefGoogle Scholar
  12. Choi H.V., Tang L.H., Johnson T.L., Pal S., Rosenberg L.C., Reiner A. and Poole A.R. 1983, Isolation and characterisation of a 35, 000 molecular weight subunit fetal cartilage matrix protein. J. Biol. Chem. 258, 655.PubMedGoogle Scholar
  13. Doege K., Fernardez P., Hassel J.R., Sasaki M. and Yamada Y., 1986Google Scholar
  14. Partial cDNA sequence encoding a globular domain at the C terminus of the rat cartilage proteoglycan. J. Biol. Chem. 261, 8108.Google Scholar
  15. Dziewiatkowski D.D. and Majznerski L.L. 1985. Role of proteoglycans in endochondral ossification: inhibition of calcification. Calcif. Tissue Int. 37, 560.PubMedCrossRefGoogle Scholar
  16. Dziewiatkowski D.D. 1987. Binding of calcium by proteoglycans in vitro. Calcif. Tissue Int. 40, 265.PubMedCrossRefGoogle Scholar
  17. Ehrlich M.G., Armstrong A.L., Neuman R.G., Davis M.W. and Mankin H.J. 1982. Patterns of proteoglycan degradation by a neutral protease from human growth-plate epiphyseal cartilage. J. Bone Joint Surgery, 64-A, 1350.Google Scholar
  18. Genge B.R., Sauer G.R., Wu L.N.Y., McLean F.M. and Wuthier R.E. 1988a. Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J. Biol. Chem. 263, 18513.Google Scholar
  19. Genge B.R., Wu L.N.Y. and Wuthier R.E. 1988b. Identification of three major matrix vesicles proteins as Ca - and phosphatidyl serine binding proteins (CAPSBP). III Int. Conference on the chemistry and biology of mineralized tissues. Chatham, Mass. pag. 194.Google Scholar
  20. Halberg D.F., Proulx G., Doege K., Yamada Y. and Drickamer K. 1988, A segment of the cartilage proteoglycan core protein has lectin-like activity. J. Biol. Chem., 263, 9486.Google Scholar
  21. Hinek A. and Poole A.R. 1988. The influence of vitamin D metabolites on the calcification of cartilage matrix and the C-propeptide of Type II collagen (chondrocalcin). J. Bone Min. Res. 3, 421.CrossRefGoogle Scholar
  22. Hirschman A., Deutsch D., Hirschman M., Bab A., Sela J. and Muhlrad A. 1983. Neutral peptidase activities in matrix vesicles from bovine fetal alveolar bone and dog osteosarcoma. Calcif. Tissue Int. 35, 791.Google Scholar
  23. Howell D.S., Blanco L., Pita J.C. and Muniz 0. 1978. Further characterization of a nucleational agent in hypertrophic cell extracellular cartilage fluid. Met. Bone Dis. 1, 155.Google Scholar
  24. Hunter G.K., Wong K.S. and Kim J.J. 1988. Binding of calcium to glycosaminoglycans: an equilibrium dialysis study. Archiv. Biochem. Biophys. 260, 161.Google Scholar
  25. Kakuta S., Golub E.E., Haselgrove J.C., Chance B., Frasca P. and Shapiro I.M. 1986. Redox studies of the epiphyseal growth cartilage: pyridine nucleotide metabolism and the development of mineralization. J. Bone Min. Res. 1, 433.Google Scholar
  26. Katz E.P., Wachtel E.J. and A. Maroudas. 1986, Extrafibrillar proteoglycans osmotically regulate the molecular packing of collagen in cartilage. Biochim. Biophys. Acta. 882, 136.Google Scholar
  27. Lemasters J.L., Digiuseppi J., Nieminen A.L. and Herman B. 1987. Blebbing, free Ca and mitochondrial membrane potential preceding cell death in hepatocytes. Nature, 325, 78.PubMedCrossRefGoogle Scholar
  28. Low M.G. and Saltiel A.R. 1988. Structural and functional roles ofglycosyl-phosphatidyl inositol in membranes. Science, 239, 268.Google Scholar
  29. Matsumoto H., DeBolt K. and Shapiro I.M. 1988. Adenine, gauanine and inosine nucleotides of chick growth cartilage: relationship between energy status and the mineralization process. J. Bone Min. Res. 3, 347.Google Scholar
  30. Mendler M., Eich-Bender S.G., Vaughan L., Wintherhalter K.H. and Bruckner P. 1989. Cartilage contains mixed fibrils of collagen Types II, IX, and XI. J. Cell Biol. 108, 191.Google Scholar
  31. Reginato A.M., Shapiro I.M., Lash J.W. and Jimenez S.A. 1988. Type X collagen alterations in rachitic chick epiphyseal growth cartilage. J. Biol. Chem. 263, 9938.Google Scholar
  32. Scott. J.E. 1988. Proteoglycan-fibrillar collagen interactions. Biochem.J. 252, 313.PubMedGoogle Scholar
  33. Shapiro I.M., Golub E.E., Kakuta S., Hazelgrove J., Havery J., Chance B. and Frasca P. 1982. Initiation of endochondral calcification is related to changes in the redox state of hypertrophic chondrocytes. Science 217, 950.PubMedCrossRefGoogle Scholar
  34. Stagni N., Camerotto R., de Bernard B., Vittur F., Zanetti M. and Rovis L. 1979. Proteoglycans in rachitic cartilage. Bull. Mol. Biol. Med. 4, 294.Google Scholar
  35. Tsonis P.A., Argraves W.S. and Millan J.L. 1988. A putative functional domain of human placenta alkaline phosphatase predicted from sequence comparisons. Biochem. J. Lett. 254, 623.Google Scholar
  36. Van der Rest M., Rosenberg L., Olsen B.R. amd Poole A.R. 1986. Chondrocalcin is identical with the C-propeptide of type II procollagen. Biochem.J., 237, 923.Google Scholar
  37. Vittur F., Pugliarello M.C. and de Bernard B. 1972. The calcium binding properties of a glycoprotein isolated from pre-osseous cartilage. Biochem. Biophys. Res. Comm. 48, 143.Google Scholar
  38. Vittur F., Zanetti M., Stagni N. and de Bernard B. 1977a. Are newly synthetized proteoglycans responsible for calcification in cartilage? Bull. Mol. Biol. Med. 2, 189.Google Scholar
  39. Vittur F. Stagni N., Zanetti M., de Bernard B. and Rovis L. 1977b. Some properties of proteoglycans derived from non calcifying and calcifying cartilage. Bull. Mol. Biol. Med. 2, 40.Google Scholar
  40. Vittur F., Zanetti M., Stagni N. and de Bernard B. 1979. Further evidence for the participation of glycoproteins to the process of calcification. in: Perspectives in inherited metabolic diseases. vol. 2. Berra B., Balduini C., Di Donato S. and Tettamanti G. Eds. Edi.ermes Milano, p. 13.Google Scholar
  41. Vittur F., Stagni N., Moro L. and de Bernard B. 1984. Alkaline phosphatase binds to collagen; a hypothesis on the mechanism of extravesicular mineralization in epiphyseal cartilage. Experientia 40, 836.PubMedCrossRefGoogle Scholar
  42. Vittur F., Pollesello P., Figueras T. and de Bernard B. 1989. Different sensitivity of cultured chondrocytes and ROS 17/2 cells to polyamines. Bull. Mol. Biol. Med. in press.Google Scholar
  43. Wu J.J. and Eyre D.R. 1984. Cartilage type IX collagen is cross-linked by hydroxypyridinium residues. Biochem. Biophys. Res. Comm. 123, 1033–1039.PubMedCrossRefGoogle Scholar
  44. Wuthier R.E. and Gore S.T. 1977. Partition of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions: Evidence for Ca:Pi acidic phospholipid complexes. Calcif. Tissue Res. 24, 163.PubMedCrossRefGoogle Scholar
  45. Wuthier R.E. and Register T.C. 1985. Role of alkaline phosphatase, a polyfunctional emzyme, in mineralizing tissues. in: “The chemistry and biology of mineralized tissues ” ( Butler W.T. ed.) EBSCO Media Inc., Birmingham AL, p. 113.Google Scholar
  46. Zanetti M., Camerotto R., Romeo D. and de Bernard B. 1982. Activeextrusion of Ca2+ from epiphyseal chondrocytes of normal and rachitic chickens. Biochem. J. 202, 303.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Benedetto de Bernard
    • 1
  • Franco Vittur
    • 1
  1. 1.Dipartimento di BiochimicaBiofisica e Chimica delle Macro-molecole-Universita’ degli Studi di Trieste-ItalyItaly

Personalised recommendations