Skip to main content

Analysis of Embryonic Cartilage and Bone Induction in a Defined Culture System

  • Conference paper
Bone Regulatory Factors

Abstract

The primary means by which vertebrate mineralized tissues become determined during development is by interaction between different regions of the embryo, a process known as embryonic induction. Numerous examples of embryonic induction were intensively studied problems in developmental biology during the first 70 years of the 20th century (see reviews by Spemann, 1938, Grobstein, 1967; Hall, 1988). Progress in the last few years has in part been the result of applications of recombinant DNA technology to classical questions in the field of embryonic induction (e.g. see recent reviews by Gurdon, 1987; 1988; Edelman, 1988). The key issues appear to be when, where and which sequence of regulatory factor expression activate signal transduction processes resulting in the allocation, determination and differentiation of specific phenotypes. There are probably multiple signals and multiple receptors required for inductive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, H.C., 1976, Osteogenic epithelial-mesenchymal cell interactions, Clin. Orthop. Rel. Res., 119: 211.

    Google Scholar 

  • Beck, F., Samani, N.J., Penschow, J.D., Thorley, B., Tregear, G.W., and Coghlan, J.P., 1987, Histochemical localization of IGF-I and -II mRNA in the developing rat embryo, Development, 101: 175.

    PubMed  CAS  Google Scholar 

  • Brachmann, R., Lindquist, P.B., Nagashima, M., Kohr, W., Lipari, T., Napier, M., and Derynck, R., 1989, Transmembrane TGF-alpha precursors activate EGF/TGFalpha receptors, Cell, 56: 691.

    Google Scholar 

  • Canalis, E., 1985, Effect of growth factors on bone cell replication and dfferentiation, Clin. Orthop. Relat. Res., 193: 246.

    PubMed  CAS  Google Scholar 

  • Caplan, A.I. and Pechak, D.G., 1987, The cellular and molecular embryology of bone formation, in: “Bone And Mineral Research/5,” W.A. Peck, ed., Elsevier, Amsterdam.

    Google Scholar 

  • Centrella, M. and Canalis, E., 1985, Transforming and nontransforming growth factors are present in medium conditioned by fetal rat calvariae, Proc. Natl. Acad. Sci., USA, 82: 7335.

    Article  Google Scholar 

  • Dale, L. and Slack, J.M.V., 1987, Regional specification within the mesoderm of early embryos of Xenopus laevis, Development, 100: 279.

    PubMed  CAS  Google Scholar 

  • Derynck, R., 1988, Transforming growth factor alpha, Cell, 54: 593.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G.M., 1988, “Topobiology”, Basic Books, Inc., New York.

    Google Scholar 

  • Gans, C., 1988, Craniofacial growth, evolutionary questions, Development, 103: 3.

    PubMed  Google Scholar 

  • Greenwald, I., 1985, Lin-2, a nematode homeotic gene is homologous to a set of mammalian proteins that includes epidermal growth factor, Cell, 43: 583.

    Article  PubMed  CAS  Google Scholar 

  • Grobstein, C., 1967, Mechanisms of organogenetic tissue interaction, Natl. Cancer Inst. Monogr., 26: 279.

    PubMed  CAS  Google Scholar 

  • Gurdon, J.B., 1987, Embryonic induction-molecular prospects, Development, 99:285. Gurdon, J.B., 1988, A community effect in animal development, Nature, 336:772. Hall, B.K., 1980, Tissue interactions and the initiation of osteogenesis and chondrogenesis in the neural crest-derived mandibular skeleton of the embryonic mouse as seen in isolated murine tissues and in recombination of murine and avian tissues, J. Embryol. Exp. Morph., 58: 251.

    Google Scholar 

  • Hall, B.K., 1981, The induction of neural crest-derived cartilage and bone by embryonic epithelia: an analysis of the mode of action of an epithelialmesenchymal interaction, J. Embryol. Exp. Morph., 64: 305.

    PubMed  CAS  Google Scholar 

  • Hall, B.K., 1982, The role of tissue interactions in the growth of bone. in: “Factors and Mechanisms Influencing Bone Growth,” A.S. Dixon and B.G. Sarnat, eds., Alan R. Liss, Inc., New York.

    Google Scholar 

  • Hall, B.K., 1984, Genetic and epigenetic control of connective tissues in the cranial structures. Birth Defects: Original Article Series, 20 (3): 1.

    CAS  Google Scholar 

  • Hall, B.K., 1987, Initiation of chondrogenesis from somitic, limb and craniofacial mesenchyme: search for a common mechanism, in: “Somites in Developing Embryos,” R. Bellairs, D.A. Ede and J.W. Lash, eds., Plenum, New York.

    Google Scholar 

  • Hall, B.K., I988a, Patterning of connective tissues in the head: discussion report, Development, 103: 171.

    Google Scholar 

  • Hall, B.K., 1988b, The embryonic development of bone, American. Sci., 76:174. Hall, B.K., Van Exan, R., and Brunt, S., 1983, Retention of epithelial basal lamina

    Google Scholar 

  • allows isolated mandibular mesenchyme to form bone, J. Craniofac. Genet. & Develop. Biol.,3:253.

    Google Scholar 

  • Han, V.K.M., D’Ercole, J., and Lund, P.K., 1987, Cellular localization of somatomedin (insulin-like growth factor)messenger RNA in the human fetus, Science, 236: 193.

    Article  PubMed  CAS  Google Scholar 

  • Hauschka, P.V., Mavrakos, A.E., Iafrati, M.D., Doleman, S.E., and Klagsbrun, M., 1986, Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose, J. Biol. Chem., 261: 1 2665.

    Google Scholar 

  • Hauschka, P.V., Chen, T.L., and Mavrakos, A.E., 1988, Polypeptide growth factors in bone matrix, in: “Cell and Molecular Biology of Vertebrate Hard Tissues,” G.A. Rodan, ed., Wiley, Chichester.

    Google Scholar 

  • Jacobsen, W. and Fell, H.B., 1941, The developmental mechanics and potencies of the

    Google Scholar 

  • undifferentiated mesenchyme of the mandible, Quart. J. Micro. Sci.,82:563.

    Google Scholar 

  • Jones, F.S., Burgoon, M.P., Hoffman, S., Crossin, K.L., Cunningham, B.A., and Edelman, G.M., 1988, A cDNA clone for cytotactin contains sequences similar to epidermal growth factor-like repeats and segments of fibronectin and fibrinogen, Proc. Natl. Acad. Sci., USA, 85: 2186.

    Article  PubMed  CAS  Google Scholar 

  • Jones, F.S., Hoffman, S., Cunningham, B.A., and Edelman, G.M., 1989, A detailed structural model of cytotactin: protein homologies, alternative RNA splicing and binding regions, Proc. Natl. Acad. Sci. USA, 86: 1905.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, M. and Urist, M.R., 1988, Growth factors, mitogens, cytokines and bone morphogenetic protein in induced chondrogenesis in tissue culture, Develop. Biol., 130: 435.

    Article  PubMed  CAS  Google Scholar 

  • Kimelman, D. and Kirschner, M., 1987, Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo, Cell, 51: 869.

    Article  PubMed  CAS  Google Scholar 

  • Lian, J., Stewart, C., Puchacz, E., Mackowiak, S., Shalhoub, V., Collart, D., Zambetti, G., and Stein, G., 1989, Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression, Proc. Natl. Acad. Sci, USA, 86: 1143.

    Article  PubMed  CAS  Google Scholar 

  • Lumsden, A.G.S., 1988, Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ, Development, 103: 155.

    PubMed  Google Scholar 

  • Mackie, E.J., Thesleff, I., and Chiquet-Ehrismann, R., 1987, Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro, J. Cell Biol., 105: 2569.

    Article  PubMed  CAS  Google Scholar 

  • Mohan, S., Linkhart, T.A., Jennings, J.C., and Baylink, D.J., 1987, Identification and quantitation of four distinct growth factors stored in human bone matrix, J. Bone Miner. Res., 2(Suppl. 1):44. •

    Google Scholar 

  • Nakano, T., Kimoto, S., Tanikawa, K., Kim, K.T., Higaki, M., Kawase, T., and Saito, S., 1989, Identification of osteoblast-specific monoclonal antibodies, Calcif. Tiss Int., 44: 220.

    Article  CAS  Google Scholar 

  • Nilsson, A., Isgaard, J., Lindahl, A., Dahlstrom, A., Skottner, A., Isaksson, O.G.P., 1986, Regulation by growth hormone of number of chondrocytes containing IGF-I in rat growth plate, Science, 233: 571–574.

    Article  PubMed  CAS  Google Scholar 

  • Otte, A.P., Koster, C.H., Snoek, G.T., and Durston, A.J., 1988, Protein kinase C mediates neural induction in Xenopus laevis, Nature, 334: 618.

    Article  PubMed  CAS  Google Scholar 

  • Panayotou, G., End, P., Aumailley, M., Timpl, R., and Engel, J., 1989, Domains of laminin with growth-factor activity, Cell, 56: 93.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, C.A., Pearson, D., Shibahara, S., Hofsteenge, J., and Chiquet-Ehrismann, R., 1988, Tenascin: cDNA cloning and induction by TGF-beta, EMBO J., 7:2977. Pechak, D.G., Kujawa, M.J., and Caplan, A.I., 1986, Morphology of bone development and bone remodeling in embryonic chick limbs, Bone, 7: 459.

    Google Scholar 

  • Pedersen, R.A., 1988, Early mammalian embryogenesis, in: “The Physiology of Reproduction,” E. Knobil and J. Neill et al., eds., Raven Press, Ltd., New York.

    Google Scholar 

  • Pfeilschifter, J., D’Souza, S., and Mundy, G.R., 1986, Transforming growth factor beta is released from resorbing bone and stimulates osteoblast activity, J. Bone Miner. Res., 1 (Suppl.): 294.

    Google Scholar 

  • Rappolee, D.A., Mark, D., Banda, M.J., and Werb, Z., 1988a, Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping, Science, 241: 708.

    Article  PubMed  CAS  Google Scholar 

  • Rappolee, D.A., Brenner, C.A., Schultz, R., Mark, D., and Werb, Z., 1988b, Developmental expression of PDGF, TGF-alpha and TGF-beta genes in preimplantation mouse embryos, Science, 241: 1823.

    Article  PubMed  CAS  Google Scholar 

  • Rappolee, D.A., Wang, A., Mark, D., and Werb, Z., 1989, Novel method for studying mRNA phenotypes in single or small numbers of cells, J. Cell. Biochem., 39: 1.

    Article  PubMed  CAS  Google Scholar 

  • Raisz, L.G., 1988, Hormonal regulation of bone growth and remodelling, in: “Cell and Molecular Biology of Vertebrate Hard Tissues,” G.A. Rodan, ed., Wiley, Chichester.

    Google Scholar 

  • Rall, L.B., Scott, J., Bell, G.I., Crawford, R.J., Penschow, J.D., Niall, H.D., and Coghlan, J.P., 1985, Mouse prepro-epidermal growth factor synthesis by the kidney and other tissues, Nature, 313: 228

    Article  PubMed  CAS  Google Scholar 

  • Robey, P.G., Young, M.F., Flanders, K.C., Roche, N.S., Kondaiah, P., Reddi, A.H., Termine, J.D., Sporn, M.B., and Roberts, A.B., 1987, Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro, J. Cell Biol., 105: 457.

    Article  PubMed  CAS  Google Scholar 

  • Rodan, G.A., Heath, J.K., Yoon, K., Noda, M., and Rodan, S.B., 1988, Diversity of the osteoblastic phenotype, in: “Cell and Molecular Biology of Vertebrate Hard Tissues,” G.A. Rodan, ed., Wiley, Chichester.

    Google Scholar 

  • Rutter, W.J., and Pictet, R.L., 1976, Hormone-like factor(s) in mesenchymal-epithelial interactions during embryonic development, in: “Embryogenesis in Mammals,” K.Elliot and M. O’Connor, eds., Wiley, New York.

    Google Scholar 

  • Sandberg, M., Vuorio, T., Hirvonen, H., Alitalo, K., and Vuorio, E., 1988, Enhanced expression of TGF-beta and c-fos mRNAs in the growth plates of developing human long bones, Development, 102: 461–470.

    Google Scholar 

  • Sandy, J.R., Meghji, S., Scutt, A.M., Harvey, W., Harris, M., and Meikle, M.C., 1989, Murine osteoblasts release bone-resorbing factors of high and low molecular weights: stimulation by mechanical deformation, Bone and Mineral, 5: 155.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J., Urdea, M., Quiroga, M., Sanchez-Pescador, R., Fong, N., Selby, M., Rutter, W.J., and Bell, G.í.,1983, Structure of a mouse submaxillary messenger RNA encoding epidermal growth factor and seven related proteins, Science, 221: 236.

    Google Scholar 

  • Seyedin, S.M., Segarini, P.R., Rosen, D.M., Thompson, A.Y., Bentz, H., and Graycar, J., 1987, Cartilage-inducing factor-B is a unique protein structurally and functionally related to transforming growth factor-beta, J. Biol. Chem., 262: 1946.

    PubMed  CAS  Google Scholar 

  • Shapiro, I.M., Golub, E.E., Chance, B., Piddington, C., Oshima, O., Tuncay, O.C., and Haselgrove, J.C., 1988, Linkage between energy status of perivascular cells and mineralization of the chick growth cartilage, Develop. Biol., 129: 372.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe, C.R., Fritz, A., De Robertis, E.M., and Gurdon, J.B., 1987, A homeoboxcontaining marker of posterior neural differentiation shows the importance of predetermination in neural induction, Cell, 50: 749.

    Google Scholar 

  • Slack, J.M.W., Darlington, B.G., Heath, J.K., and Godsave, S.F., 1987, Mesoderm induction in early Xenopus embryos by heparin-binding growth factors, Nature, 326: 197.

    Article  PubMed  CAS  Google Scholar 

  • Slavkin, H.C., 1978, Mandibular morphogenesis, in: “Reconstruction of Jaw Deformities,” L.A. Whitaker, ed., C.V. Mosby Co., St. Louis.

    Google Scholar 

  • Slavkin, H.C., Bringas, P., Cummings, E.C., and Grodin, M.S., 1982a, Murine mandibular chondrogenesis and osteogenesis in a serumless, chemically-defined medium, in: “Chemistry and Biology of Mineralized Connective Tissues,” A. Veis, ed., Elsevier/North holland, New York.

    Google Scholar 

  • Slavkin, H.C., Honig, L.S., and Bringas, P. 1982b, Experimental dissection of avian and murine tissue interactions using organ culture in a serumless medium free from exogenous (nondefined) factors, in:“Factors and Mechanisms Influencing Bone Growth,” A.D. Dixon and B.G. Sarnat, eds., Alan R. Liss, Inc., New York.

    Google Scholar 

  • Slavkin, H.C., Bringas, P., Sasano, Y., and Mayo, M., (in press) Early embryonic mouse mandibular morphogenesis and cytodifferentiation in serumless, chemically-defined medium: A model for studies of autocrine and/or paracrine regulatory factors, J. Craniofac. Genet. & Develop. Biol.

    Google Scholar 

  • Slavkin, H.C., Sasano, Y., Kikunaga, S., Bessern, C., Bringas, P., Mayo, M., Luo, W., Mak, G., Rall, L., and Snead, M.L. (in press) Cartilage, bone and tooth induction during early embryonic mouse mandibular morphogenesis using serumless, chemically-defined medium, Conn. Tiss. Res.

    Google Scholar 

  • Smith, J.C., 1987, A mesoderm-inducing factor is produced by a Xenopus cell line, Development, 99: 3.

    PubMed  CAS  Google Scholar 

  • Smith, L. and Thorogood, P., 1983, Transfilter studies on the mechanism of epitheliomesenchymal interaction leading to chondrogenic differentiation of neural crest cells, J. Embryol. Exp. Morph., 75: 165.

    Google Scholar 

  • Smith, J.C., Yagoob, M., and Symes, K., 1988, Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor, Development, 103: 591.

    PubMed  CAS  Google Scholar 

  • Snead, M.L., Luo, W., Oliver, P. Nakamura, M., Don-Wheeler, G., Bessern, C., Bell, G.I., Rall, L.B., and Slavkin, H.C., (in press) Localization of epidermal growth factor precursor in tooth and lung during embryonic mouse development, Develop. Biol.

    Google Scholar 

  • Spemann, H, 1938, “Embryonic Induction and Development, ” Yale University Press, New Haven.

    Google Scholar 

  • Stylianopoulou, F., Efstratiadis, A., Herbert, J., and Pintar, J., 1988, Pattern of the insulin-like growth factor II gene expression during rat embryogenesis, Development, 103: 497–506.

    PubMed  CAS  Google Scholar 

  • Termine, J.D., 1988, Non-collagen proteins in bone, in: “Cell and Molecular Biology of Vertebrate Hard Tissues,” G.A. Rodan, ed., Wiley, Chichester.

    Google Scholar 

  • Thorogood, P. 1988, The developmental specification of the vertebrate skull, Development,103:141.

    Google Scholar 

  • Tomkins, G.M., 1975, The metabolic code, Science, 189: 760.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, M.S. and Hall, B.K., 1977, Epithelial influences on skeletogenesis in the mandible of the embryonic chick, Anat. Rec., 188: 229.

    Article  PubMed  CAS  Google Scholar 

  • Urist, M.L., DeLange, R.J., and Finerman, G.A.M., 1983, Bone cell differentiation and growth factors, Science, 220: 680.

    Article  PubMed  CAS  Google Scholar 

  • Wahl, M.I., Nishibe, S., Suh, P.G., Rhee, S.G., and Carpenter, G., 1989, Epidermal growth factor stimulates tyrosine phosphorylation of phopholipase C-II independently of receptor internalization and extracellular calcium, Proc. Natl. Acad. Sci. USA, 86: 1568.

    Article  PubMed  CAS  Google Scholar 

  • Weeks, D.L. and Melton, D.A., 1987, A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta, Cell, 51: 861.

    Article  PubMed  CAS  Google Scholar 

  • Wharton, K.A., Johansen, K.M., Xu, T., and Artavanis, T., 1985, Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats, Cell, 43: 567.

    Google Scholar 

  • Wilcox, J.N. and Derynck, R., 1988, Developmental expression of transforming growth factors alpha and beta in mouse fetus, Molecular & Cellular Biology, 8: 3415.

    CAS  Google Scholar 

  • Wong, S.T., Winchell, L.F., McCune, B.K., Earp, H.S., Teixido, J., Massague, J., Herman, B., and Lee, D.C., 1989, The TGF-alpha precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction Cell56:495.

    Google Scholar 

  • Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M., and Wang, E.A., 1988, Novel regulators of bone formation: molecular clones and activities, Science, 243: 1528

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this paper

Cite this paper

Slavkin, H.C. et al. (1990). Analysis of Embryonic Cartilage and Bone Induction in a Defined Culture System. In: Pecile, A., de Bernard, B. (eds) Bone Regulatory Factors. NATO ASI Series, vol 184. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1508-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1508-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1510-1

  • Online ISBN: 978-1-4757-1508-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics