Morphological and Quantitative Aspects of Bone Formation and Mineralization

  • Gastone Marotti
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 184)


Bone formation is a biphasic process. During the first phase, the osteoblasts secrete an organic matrix, called preosseous matrix or osteoid, made up of type I collagen and ground substance (proteoglycans, glycoproteins, non-collagenous proteins). During the second phase, mineralization occurs, transforming the osteoid into bone tissue. Analyzed from the morphological viewpoint, three main aspects must be taken into account in osteogenesis of cellular bone: osteoblast dynamics, namely the mechanism by which the osteoblasts modulate the bone appositional growth rate; osteoblast-osteocyte transformation; osteoblast control of collagen orientation.


Cytoplasmic Process Collagen Orientation Lamellar Bone Osteocyte Lacuna Osteoid Seam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Lozupone, Differenze topografiche nella velocità di deposizione del tessuto osseo nella spugnosa di ossa lunghe di cani di età diversa, Arch. ital. Anat. Embriol. suppl.78:54 (1973).Google Scholar
  2. 2.
    G. Marotti, E. Lozupone, A. Favia, and V. Lattanzi, Variazioni topografiche e relative all’età della velocità di apposizione del tessuto osseo sulle trabecole della spugnosa, Boll. Soc. ital. Biol. sper. 45:1017 (1969).Google Scholar
  3. 3.
    J. D. Manson, and N. E. Waters, Maturation rate of osteon cat, Nature (Lond) 200: 489 (1963).CrossRefGoogle Scholar
  4. 4.
    J. D. Manson, and N.E. Waters, Observations on the rate of maturation of the cat osteon. J. Anat.(Lond) 99:539 (1965).PubMedGoogle Scholar
  5. 5.
    G. Marotti, and M. E. Camosso, Quantitative analysis of osteonic bone dynamics in the various periods of life, in: “Les tissus calcifiés”, G. Milhaud, M. Owen, and H. J. Blackwood, eds., SEDES, Paris (1968).Google Scholar
  6. 6.
    G. Marotti, Decrement in volume of osteoblasts during osteon formation and its effect on the size of the corresponding osteocytes, in: “Bone histomorphometry”, P. J. Meunier, ed., Armour Montagu, Paris (1977).Google Scholar
  7. 7.
    A. Zambonin Zallone, Relationship between shape and size of the osteoblasts and the accretion rate of trabecular bone surfaces, Anat. Embryol. 152:65 (1977).Google Scholar
  8. 8.
    G. Volpi, S. Palazzini, V. Canè, F. Remaggi, and M. A. Muglia, Morphometric analysis of osteoblast dynamics in the chick embryo tibia, Anat. Embryol. 162:393 (1981).Google Scholar
  9. 9.
    C. Palumbo, A three-dimensional ultrastructural study of osteoid -osteocytes in the tibia of chick embryos, Cell Tissue Res. 246: 125 (1986).Google Scholar
  10. 10.
    C. Palumbo, S. Palazzini, D. Zaffe, and G. Marotti, Osteocyte differentiation in the tibia of newborn rabbit: An ultrastructural study of the formation of cytoplasmic processes, Acta Anat. (in press).Google Scholar
  11. 11.
    R. V. Talmage, Morphological and physiological considerations in a new concept of calcium transport in bone, Amer. J. Anat. 129:467 (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Marotti, and M. A. Muglia, A scanning electron microscope study of human bony lamellae. Proposal for a new model of collagen lamellar organization, Arch. ital. Anat. Embriol. 93:163 (1988).Google Scholar
  13. 13.
    G. Marotti, The original contributions of the SEM to the knowledge of bone structure, in: “Ultrastructure of skeletal tissues. Bone and cartilage in normalcy and pathology”, E. Bonucci, and P. Motta, eds., Kluwer Academic Publishers, Norwell USA (1989) (in press).Google Scholar
  14. 14.
    W. Gebhardt, Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wiberltierknochens. II. Spezieller Teil. Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung,Arch. Entw. Mech. Org., 20: 187 (1906).Google Scholar
  15. 15.
    A. Boyde, Scanning electron microscope studies of bone, in: “The biochemistry and physiology of bone”, G. H. Bourne, ed., Academic Press, New York London (1972).Google Scholar
  16. 16.
    A. Ascenzi, E. Bonucci, and D. S. Bocciarelli, An electron microscope study of osteon calcification, J. Ultrastruct. Res. 12:287 (1965).Google Scholar
  17. 17.
    A. Ascenzi, and A. Benvenuti, Orientation of collagen fibers at the boundary between two successive osteonic lamellae and its mechanical interpretation, J. Biomechanics 19:455 (1986).CrossRefGoogle Scholar
  18. 18.
    M. M. Giraud-Guille M.M., Twisted plywood architecture of collagen fibrils in human compact bone osteons, Calcif. Tissue Int. 42:167 (1988).Google Scholar
  19. 19.
    G. W. Bernard, and D. C. Pease, An electron microscopic study of initial intramembranous osteogenesis, Am. J. Anat. 125:271 (1969).Google Scholar
  20. 20.
    E. Bonucci,(1984) The structural basis of calcification, in: “Ultrastructure of connective tissue matrix”, S. Ruggeri, and P. M. Motta eds., Martinus Nijhoff Publisher, Boston (1984).Google Scholar
  21. 21.
    S. J. Jones, A. Boyde, and J. B. Pawley, J.B., Osteoblasts and collagen orientation, Cell Tiss. Res. 159:73 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Gastone Marotti
    • 1
  1. 1.Istituto di Anatomia umana normaleUniversità di Modena PoliclinicoModenaItaly

Personalised recommendations