Recent Trends in the Use of Bone Regulatory Factors as Therapeutic Agents

  • D. Harold Copp
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 184)


Bone is a highly dynamic tissue with a blood flow in the rat which has been estimated at 5–10% of the resting cardiac output (Copp and Shim, 1965). There is also continuing osteogenesis and osteolysis occurring in the modelling of new bone in the growing animal and in the remodelling of trabecular and cortical bone in the adult. This is clearly shown by Raisz (1988a) in Figure 1, which illustrates the sequence of activation of osteolysis, a transition period and subsequent osteogenesis.


Anorexia Nervosa Parathyroid Hormone Postmenopausal Osteoporosis Parathyroid Carcinoma Salmon Calcitonin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, E., Miyaura, C., Sakagami, H.,Takeda,M., Konno, K., Yamazaki, T., Yoshiki, S., and Suda, S. (1981). Differentiation of mouse myeloid leukemia cells induced by 1-alpha-dihydroxyvitamin D3. Proc. Nat. Acad.Sci.USA 78: 4990–4994.CrossRefGoogle Scholar
  2. Alhava, E.M., and Puittinnen, J. (1973). Fractures of the upper end of the femur as an index of senile osteoporosis in Finland. Ann. Clin. Res. 5, 398–403.Google Scholar
  3. Allen, E. (1983). Calcitonin in the treatment of intractable pain from advanced malignancy. Pharmatherapeutica 3, 482–486.Google Scholar
  4. Aloia, J.F. (1985). Calcitonin and osteoporosis. Geriatric Medicine Today 4, 20–28.Google Scholar
  5. Amara, S.G., Jonas, V., Rosenfeld, M.G., Ong, E.S., and Evan, R.M. (1982). Alternative RNA processing of calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244.PubMedCrossRefGoogle Scholar
  6. Au, W.Ÿ.N. (1975). Calcitonin treatment of hypercalcaemia due to parathyroid carcinoma. Arch. Intern. Med. 135, 1594–1597.Google Scholar
  7. Austin, L.A., and Heath, H. (1981). Calcitonin Physiology and Pathophysiology. New Engl. J. Med. 304, 269–278.Google Scholar
  8. Avramides, A. (1977). Salmon and porcine calcitonin treatment of Paget’s disease of bone. Clin. Orthopaed. 127, 78–85.Google Scholar
  9. Azria, M. (1989). “The Calcitonins-Physiology and Pharmacology”. S.Karger, Basel. 152 pages.Google Scholar
  10. Behn, A.R., and West, T.E.T. (1977). Emergency treatment with calcitonin of hypercalcemia associated with multiple myeloma. Br. Med. J. 1, 755–766.Google Scholar
  11. Bijvoet, A.L.M., van der Sluys Veer, J.V.D., De Vries, H.R., and van Koppen, A.T.J. (1971). Natriuretic effect of calcitonin in man. New Engl. J. Med. 284, 681–688.CrossRefGoogle Scholar
  12. Boyle, I.T., Gray, R.W., and DeLuca, H.F. (1971). Regulation by calcium of in vitro synthesis of 1,25 dihydroxycholecalciferol and 21,25 dihydroxycholecalciferol. Proc. Natl. Acad. Sci. USA 68, 2131–2134.Google Scholar
  13. Braga, P., Ferri, S., Santagostino, A., Olgiati, V.R., and Pecile, A. (1978). Lack of opiate receptor involvement in centrally induced calcitonin induced analgesia. Life Sciences 22: 971–978.Google Scholar
  14. Brain, S.D., and Williams, T.J. (1985). Calcitonin gene-related peptide is a potent vasodilator. Nature 313, 54–56.Google Scholar
  15. Brain, S.D., Maclntyre, I., and Williams, T.J. (1986). A second form of human calcitonin gene-related peptide which is a potent vasodilator. Eur. J. Pharmacol. 124, 349–352.Google Scholar
  16. Brotman, A.W., and Stern, T.A. (1985). Osteoporosis and pathological fractures in anorexia nervosa. Am.J.Psychiatr. 142: 495–496.Google Scholar
  17. Cannigia, A., Nuti, R., Lore, F., Martini, G., Righi, G., and Turchetti, V. (1988). Long-term calcitriol treatment in postmenopausal osteoporosis: Follow up of two hundred patients. In: Vitamin D Molecular, Cellular and Clinical Endocrinology. Proc. 7th Workshop on Vitamin D., April, 1988. Eds. A.W. Norman, K. Schaefer, H.-G. Grigoleit, and D. v. Herrath. Walter de Gruyter, Berlin. pp. 807–816.Google Scholar
  18. Care, A.D., Bates, R.F.L., Swaminathan, R., Scanes, C.G., Peacock, M., Mawer, E.B., Taylor, C.M., DeLuca, H.F., Tomlinson, S., and O’Riordan, J.L.H. (1975). The control of parathyroid hormone and calcitonin secretion and interaction with other endocrine systems. In: “Calcium Regulating Hormones”, eds. R.V.Talmage, M.Owen, and J.A.Parsons, Excerpta Medica, Amsterdam, ICS 346, pp. 100–110.Google Scholar
  19. Carey, D.E., and Raisz, L.G. (1985). Calcitonin therapy in prolonged immobilization hypercalcemia. Arch. Phys. Med. Rehabil. 66, 640–644.Google Scholar
  20. Cesarani, R., Colombo, M., Olgiati, V.R., and Pecile, A. (1979). Calcitonin and prostaglandin system. Life Sciences 25: 1851–1856.CrossRefGoogle Scholar
  21. Clementi, G., Amico-Roxas, M., Rapisardi, E., Caruso, A., Prato, A., Trombadore, S., Priolo, G., and Scapagnini, U. (1985). The analgesic action of calcitonin and the control of the serotoninergic system. Eur. J.Pharmacol. 108, 71–75.Google Scholar
  22. Collip. J.B. (1925). The extraction of a parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium. J.Biol.Chem. 63: 395–438.Google Scholar
  23. Copp, D.H. (1967). Hormonal control of hypercalcemia. Historic development of the calcitonin concept. Am. J. Med. 43, 648–655. Copp, D.H. (1969). Endocrine control of calcium homeostasis. J. Endocrinol. 43, 137–161.Google Scholar
  24. Copp, H. (1971). Effets d’un regime pauvre en phosphore sur l’homeostasie du calcium et de l’ion phosphate chez le rat jeune. In: “Phosphate et Metabolisme Phosphocalcique.” Ed. D.J. Hioco. Sandoz Laboratories, L’Expansion Scientifique Francaise, Paris pp. 111–116.Google Scholar
  25. Copp, D.H., and Shim, S.S. (1965). Extraction ratio of Sr85 as a measure of effective bone blood flow. Circulation Res. 16: 461–467.PubMedCrossRefGoogle Scholar
  26. Copp, D.H., and Davidson, A.G.F. (1961). Direct humoral control of parathyroid function in the dog. Proc. Soc. Exp. Biol. Med. 107, 342–344.Google Scholar
  27. Copp, D.H., Davidson, A.G.F., and Cheney, B.A. (1961). Evidence for a new parathyroid hormone which lowers blood calcium. Proc. Can. Fed. Biol. Soc. 4, 17.Google Scholar
  28. Copp, D.H., Cameron, E.C., Cheney, B., Davidson, A.G.F., and Henze, K. (1962). Evidence for calcitonin-a new hormone from the parathyroid that lowers blood calcium. Endocrinology 70, 638–649. D.H., Cockcroft, D.W., and Kueh, Y. (1967). Calcitonin from ultimobranchial glands from dogfish and chickens. Science 158, 924–925.Google Scholar
  29. Day, H.G., and McCollum, E.V. (1939). symptomatology of rats on a diet J.Biol.Chem. 130: 269–283.Google Scholar
  30. DeLuca, H.F. (1974). Vitamin D: the Federation Proc. 33: 2211–2219.Google Scholar
  31. DeRose, J., Singer, F., Avramides, A., Flores, A., Dziadiw, R., Baker, R.K., and Wallach, S. (1974). Response of Paget’s disease to porcine and salmon calcitonins. Am. J. Med. 56, 858–866.Google Scholar
  32. Foresta, C., Zanata, G.P., Busnardo, B., Scanellí, G., and Scandellari, C. (1985). Testosterone and calcitonin plasma levels in hypogonadal osteoporotic young men. J. Endocrinol. Invest. 8, 377–379.PubMedGoogle Scholar
  33. Francheschini, R., Bottaro, P., Panapoulos, C., and Messina, V. (1984). Long term treatment with salmon calcitonin in postmenopausal osteoporosis. Current Therapeut. Res. 34, 795–800.Google Scholar
  34. Friedman, J., and Raisz, L.G. (1965). Thyrocalcitonin: inhibitor of bone resorption in tissue culture. Science 150: 1465–1467.Google Scholar
  35. Gennari, C., and Fischer, J.A. (1985). Cardiovascular action of calcitonin gene-related peptide in humans. Calcif. Tiss. Intern. 37, 581–584.Google Scholar
  36. Gennari, C., Chierichetti, S.M., Bigazzí, S., Fusi, L., Gonneli, S., Ferrara, R., and Zacchei, F. (1985). Comparative effects on bone mineral content of calcium and calcium plus salmon calcitonin given in two different regimens in postmenopausal osteoporosis. Current Therapeut. Res. 38, 455–464.Google Scholar
  37. Gibson, S.J., Polak, J.M., Bloom, S.R., Sabate, I.M., Mulderry, P.M., Chatel, M.A., McGregor, G.P., Morrison, J.F.B., Kelly, J.S., Evans, R.M., and Rosenfeld, M.G. (1984). Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and eight other species. J. Neurosciences 4, 2101–2111.Google Scholar
  38. Girgis,S.I., Stevenson, J.C., Lynch, C., Self, C.H., MacDonald, D.W.R. Bevis, P.J.R., Wimalawansa, S., Morris, H.R., and Maclntyre, I. (1985). Calcitonin gene-related peptide: potent vasodilator and major product of the calcitonin gene. The Lancet 11, 14–16.Google Scholar
  39. Goltzman, D., Potts, J.T., Ridgway, E.C., and Maloof, F. (1974). Calcitonin as a tumor marker-use of the radioimmunoassay for calcitonin in the post-operative evaluation of patients with medullary carcinoma. New Eng. J. Med. 290, 1035–1039.Google Scholar
  40. Gordan, G.S., and Vaughan, C. (1980). Use of sex steroids in the clinical management of osteoporosis. In “Clinical Use of Sex Steroids” ( Givens, J.R., ed.), pp. 69–94, Yearbook Medical Publishers, Chicago.Google Scholar
  41. Gray, T.K., and Munson, P.L. (1969). Thyrocalcitonin-evidence for a physiological function. Science 166, 1512–1513.Google Scholar
  42. Guttmann, S. (1981). Chemistry and structure-activity relationships of natural and synthetic calcitonins. In: Calcitonin 1980, Proc. Int. Symposium in Milan. Ed. A.Pecile. Excerpta Medica Int. Congr.Ser. 51: 11–24. Amsterdam.Google Scholar
  43. Guttman, S., Pless, J., Huguenin, R.L., Sandrin, E., Bossert, H., and Zehnder, K. (1969). Synthese von Salm-Calcitonin, einem hochaktiven hypocalcamischen Hormon. Helv. Chim. Acta 52, 1789–1795.Google Scholar
  44. Henke, H., Tobler, P.H., and Fischer, J.A. (1983). Localization of salmon calcitonin binding sites in rat brain by autoradiography. Brain Res. 272, 371–377.Google Scholar
  45. Hillyard, C.J., Stevenson, J.C., and Maclntyre, I. (1978). Relative deficiency of plasma-calcitonin in normal women. The Lancet 1, 961–962.Google Scholar
  46. Hirsch, P.F., Voelkel, E.F., and Munson, P.L. (1964). Thyrocalcítonin: hypocalcemic hypophosphatemic principle of the thyroid gland. Science 146, 412–413.Google Scholar
  47. Hock,J.M., Hummert,J.R., Boyce, R. Fonseca, J., and Raisz, L.G. (1985) Resorption is not essential for the stimulation of bone growth by bPTH (1–34) in rats in vivo. J.Bone & Mineral Res. 4, 449–458.Google Scholar
  48. Kallio, D.M., Garant, P.R., and Minkin, C. (1972). Ultrastructural effects of calcitonin on osteoclasts in tissue culture. J. Ultrastruct. Res. 39, 205–216.Google Scholar
  49. Keeler, R., Walker, V., and Copp, D.H. (1970). Natriuretic and diuretic effects of salmon calcitonin in rats. Can. J. Physiol. Pharmacol. 48, 838–841.Google Scholar
  50. Kittur, S.D., Hoppener, J.W.M., Antonarakis, S.E., Daniels, J.D.J., Meyers, D.A., Maestri, N.E., Jansen, M., Korneluk, R.G., Nelkin, B.D., and Kazazian, H.H. (1985). Linkage map of the short arm of human chromosome 11: location of the genes for catalase, calcitonin and insulin-like growth factor II. Proc. Natl. Acad. Sci. (USA) 82, 5064–5067.Google Scholar
  51. Klein, D.C., and Talmage, R.V. (1968). Thyrocalcitonin suppression of hydroxyproline release from bone. Proc. Soc. Exp. Biol. Med. 127, 95–99.Google Scholar
  52. Kodicek, E. (1974). The story of vitamin D, from vitamin to hormone. The Lancet 1, 325–329.Google Scholar
  53. Le Douarin, N., and Le Lievre, C. (1970). Demonstration de l’origine neurales des cellules a calcitonine du corps ultimobranchial chez l’embryon poulet. C.R.Acad.Sci. Paris 270, 2857–2860.Google Scholar
  54. Lee, Y., Takami, K., Kawai, Y., Girgis, S.I., Hillyard, C.J., Maclntyre, I., Emson, P.C., and Toyama, M. (1985). Distribution of calcitonin gene-related peptide in the rat peripheral nervous system with reference to its coexistence with substance P. Neuroscience 15, 1227–1237.Google Scholar
  55. Levine, A.S., and Morley, J.E. (1981). Reduction of feeding in rats by calcitonin. Brain Res. 222, 187–191.Google Scholar
  56. Lewis, P., Rafferty, B., Shelley, M., and Robinson, C.J. (1970). A suggested physiological role for calcitonin: the protection of the skeleton during pregnancy and lactation. J. Endocrinol. 49, ix-x.Google Scholar
  57. MacCallum, W.G., Voegtlin, C. (1909). On the relation of tetany to the parathyroid glands and to calcium metabolism. J.Exp.Med. 11: 118–151.Google Scholar
  58. MacDonald, B.R., Gallagher, J.A., and Russell, R.G.G. (1986). Parathyroid hormone stimulates the proliferation of cells derived from human bone. Endocrinology 118: 2445–2449.Google Scholar
  59. Maclntyre, I. (1984). Katacalcin: discovery of a new hormone with implications for our general concepts of treatment in bone disease. Acta Med. Austriaca (Suppl). 30, 17–18.Google Scholar
  60. Maclntyre, I., and Craig, R.K. (1981). Molecular evolution of the calcitonins. In: “Neuropeptides-Basic and Clinical Aspects.” (Proc. 11th Pfizer Internat. Symposium) pp. 254–258. Churchill Livingston, Edinburgh.Google Scholar
  61. Maclntyre, I., Hillyard, C.J., Murphy, RP.K., Reynolds, J.J., Das, R.E.G., and Craig, R.K. (1982). A second plasma calcium-lowering peptide from the human calcitonin precursor. Nature 300, 460–462.Google Scholar
  62. McLean, F.C. (1957). The parathyroids and bone. Clin.Orthopaed. 9, 46–60.Google Scholar
  63. Marcus, R., and Aurbach, G.D. (1969). Bioassay of parathyroid hormone in vitro with a stable preparation of adenyl-cyclase from rat kidney. Endocrinology 85, 801–810.Google Scholar
  64. Maresca, V. (1985). Human calcitonin in the management of osteoporosis: a multicentre study. J. Int. Med. Res. 13, 311–361.Google Scholar
  65. Martin, T.J. (1981). Treatment of Paget’s disease with calcitonin. Aust. N. Z. J. Med. 9, 36–43.Google Scholar
  66. Marx, S.J., Woodward, C.J., and Aurbach, G.D. (1972). Calcitonin receptors of kidney and bone. Science 178, 999–1000.Google Scholar
  67. Mazzuoli, G.F., Passeri, M., Gennari, C., Minisola, S., Antonelli, R., Valorta, C., Palunneri, E., Cervellin, G.F., Gonnelli, S., and Francini, G. (1986). Effects of salmon calciton in inGoogle Scholar
  68. postmenopausal osteoporosis: a controlled double-blind study. Calcif. Tissue. Internat. 38, 3–8.Google Scholar
  69. Milhaud, G., Benezech-Lefevre, M, and Moukhtar, M.S. (1978). Deficiency of calcitonin in age related osteoporoses. Biomedicine 29, 272–276.PubMedGoogle Scholar
  70. Moríkawa, T., Munekata, E., Sakakibara, S., Noda, T., and Otani, M. (1976). Synthesis of eel calcitonin and (Asu 1,7)-eel-calcitonin: Contribution of the disulfide bond to the hormonal activity. Experientia 32, 1104–1106.Google Scholar
  71. Morley, J.E., and Levine, A.S. (1981). Intraventricular calcitonin inhibits gastric acid secretion. Science 214, 671–673.Google Scholar
  72. Moseley, J.M., Kubota, M., Diefenbach-Jagger, H., Wettenhall, R.H., Suva, L.J., Rodda, C.P., Ebeling, P.R., Hudson, P.J., Zajac, J.D., and Martin, T.J. (1987). Parathyroid hormone-related protein purified from a lung cancer. Proc. Nat. Acad. Sci. USA 4, 5048–5053.Google Scholar
  73. Neher, R., Riniker, B., Rittel, W., and Zuber, H. (1986). Menschliches calcitonin. III. Struktur von calcitonin M. und D. Heiv. Chim. Acta 51, 1900–1905.Google Scholar
  74. Niall, J.T., Keutmann, H.T., Copp, D.H., and Potts, J.T. (1969). Amino acid sequence of salmon ultimobranchial calcitonin. Proc. Natl. Acad. Sci USA 63, 771–778.Google Scholar
  75. Niall, H.D., Keutmann, H.T.,Sauer, R., Hogan, M., Dawson, B.F., Aurbach, G.D., and Potts, Jr., J.T. (1970). The amino-acid sequence of bovine parathyroid hormone. Hoppe-Seylers Z. Physiol.Chem. 351, 1586–1588.Google Scholar
  76. O’Dor, R.K., Parkes, C.O., and Copp, D.H (1969). Amino acid composition of salmon calcitonin. Can. J. Biochem. 47, 823–825.Google Scholar
  77. Osteoporosis - Consensus Conference. (1986). J. A. M. A. 252, 799–802.Google Scholar
  78. Osteoporosis - Consensus Conference. (1986). J.Am.Med.Assoc. 252, 799–802.Google Scholar
  79. Otani, M., Noda, T., Yamauchi, H., Watanabe, S., Matsuda, T., Orimo, H. and Narita, K. (1975). Isolation, chemical structure and biological properties of ultimobranchial calcitonin of the eel. In: “Calcium Regulating Hormones”, eds. R.V.Talmage, M.Owen and J.A.Parsons, Excerpta Medica, Amsterdam, ICS pp. 111–115.Google Scholar
  80. Parsons, J.A., and Reynolds, J.J. (1968). Species discrimination between calcitonins. The Lancet 1, 1067–1070.CrossRefGoogle Scholar
  81. Parthemore, J.C., and Deftos, L.J. (1978). Calcitonin secretion in normal human subjects. J.Clin.Endocrinol. & Metab. 47, 184–188.CrossRefGoogle Scholar
  82. Pearse, A.G.E. (1966). The cytochemistry of the thyroid C cells and their relationship to calcitonin. Proc. Roy. Soc. London (Ser. B) 164, 478–487.Google Scholar
  83. Pearse, A.G.E., and Carvalheira, A.F. (1967). Cytochemical evidence for an ultimobranchial origin of rodent thyroid C cells. Nature 214, 929–930.Google Scholar
  84. Pecile, A., Ferri, S., Braga, P.C., and Olgiati, V.R. (1975). Effects of intracerebroventricular calcitonin in the conscious rabbit. Experientia 31, 332–333.Google Scholar
  85. Potts, J.T., Niall, H.D., Keutmann, H.T., Brewer, H.B., and Deftos, L.J. (1968). The amino acid sequence of porcine thyrocalcítonin. Proc. Natl. Acad. Sci. USA 59, 1321–1328.Google Scholar
  86. Raisz, L.G. (1988a). Bone metabolism and its regulation: an update. Triangle 27, 5–10.Google Scholar
  87. Raísz, L.G. (1988b). Local and systemic factors in the pathogenesis of osteoporosis. New Engl. J. Med. 318, 818–828.Google Scholar
  88. Reichel, H., Koefler, H.P., and Norman, A.W. (1989). The role of the vitamin D endocrine system in health and disease. New Engl. J. Med. 320, 980–991.Google Scholar
  89. Reginster, J.Y., Albert, A., and Franchimont, P. (1985). Salmoncalcitonin nasal spray in Paget’s disease of bone: preliminary results in five patients. Calcif. Tiss. Internat. 37, 577–580.Google Scholar
  90. Reynolds, J.J. (1968). Inhibition by calcitonin of bone resorption induced in vitro by vitamin A. Proc. Roy. Soc. London (Ser. B) 170, 61–69.Google Scholar
  91. Rico, H. (1985). Calcitonin and treatment of osteoporosis. J. Med. 16, 493–495.Google Scholar
  92. Riggs, B.L., Baylink, D.J., Kleerekoper, M., Lane, J.M., Melton, L.J., and Meunier, P.J. (1987). Incidence of hip fractures in osteoporotic women treated with sodium fluoride. J.Bone and Mineral Res. 2, 123–126.Google Scholar
  93. Rohner, A., and Planche, D. (1985). Mechanism of the analgesic effect of calcitonin. Evidence for a two-fold effect: morphine-like and cortisone-like. Clin. Rheumatol. 4, 218–219.Google Scholar
  94. Sampath, T.K., Muthukumaran, N., and Reddi, H.(1987). Isolation of osteogenin, an extracellular matrix associated bone-inductive protein by heparin affinity chromatography. Proc. Nat. Acad. Sci. USA, 84, 7109–7113.Google Scholar
  95. Silva, 0.L., and Becker, K.K. (1973). Salmon calcitonin in the treatment of hypercalcaemia. Arch. Int. Med. 132. 337–339.Google Scholar
  96. Silva, 0.L., Broder, L.E., Dippman, J.L., Snider, R.H., Moore, C.F., Cohen, M.H., and Becker, K. (1979). Calcitonin as a marker for bronchogenic cancer. Cancer 44, 680–684.Google Scholar
  97. Singer, F.R. (1977). Human calcitonin treatment of Paget’s disease of bone. Clin. Orthopaed. 127, 86–93.Google Scholar
  98. Slovik, D.M., Rosenthal, D.I., Doppelt, S.H., Potts, J.T., Daly, M.A. Campbell, J.A., and Neer, R.M. (1986). Restoration of spinal bone in osteoporotic men by treatment with human parathyroid hormone (1–34) amd 1,25-dihydroxyvitamin D. J. Bone Mineral Res. 1, 37–381.Google Scholar
  99. Stevenson, J.C., and Evans, I.M.A. (1982). Oestrogens, calcitonin and parathyroid hormone secretion. Maturitas 4, 1–7.Google Scholar
  100. Stevenson, J.C., Myers, C.H., and Ajdukiewics, (1984). Racial differences in calcitonin and katacalcin. Calcif. Tiss. Int. 36, 725–728.Google Scholar
  101. Struthers, A.D., Brown, M.J., Macdonald, D.W.R., Beacham, J.L., Stevenson, J.C., Morris, H.R., and Maclntyre, I. (1986). Human calcitonin gene-related peptide: a potent endogenous vasodilator in man. Clin. Sci. 70, 389–393.Google Scholar
  102. Szanto, J., Jozsef, S., Rado, J., Juhos, E., Hindy, I., and Eckhardt, S. (1986). Pain killing with calcitonin in patients with malignant tumors. Oncology 43, 69–72.Google Scholar
  103. Tanaka, Y., and DeLuca, H.F. (1973). The control of 25-hydroxyvitamin D metabolism by inorganic phosphate. Arch. Biochem. Biophys. 154, 566–571.Google Scholar
  104. Tauber, S.D. (1967). The ultimobranchial origin of thyrocalcitonin. Proc. Nat. Acad. Sci.USA 58, 1684–1687.Google Scholar
  105. Tippins, J.R., Morris, H.R., Panico, M., Etienne, T., Bevis, P., Girgis, S., Maclntyre, I., Azria, M., and Attinger, M. (1984). The myotrophic and plasma-calcium modulating effects of calcitonin gene-related peptide (CGRP). Neuropeptides 4, 425–434.Google Scholar
  106. Wolfe, H.J. (1982). Calcitonin: perspectives and current concepts. J. Endocrinol. Invest. 5, 423–432.Google Scholar
  107. Zaidi, M., Bevis, P.J.R., Abeyasekera, G., Girgis, S.I., Wimalawansa, S.J., Morris, H.R. and Maclntyre, I. (1986). The origin of circulating calcitonin gene-related peptide in the rat. J. Endocrinol. 110, 185–190.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • D. Harold Copp
    • 1
  1. 1.Department of PhysiologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations