Skip to main content

Physico-Chemical Principles of Biomineralization

  • Conference paper
Bone Regulatory Factors

Part of the book series: NATO ASI Series ((NSSA,volume 184))

Abstract

Fundamental physico-chemical knowledge of the mineral components in skeletal tissues has increased substantially during the 3 decades since the publication of Neuman and Neuman’s (1958) pioneering treatise on this subject. In particular, the dominant apatitic phase has become especially well characterized in terms of its chemical, structural, and morphological features. Substantial progress has also been made in our understanding of the dynamics of calcium phosphate precipitation in aqueous synthetic and in vitro systems. Less complete, however, is our knowledge of the actual deposition processes by which the bony extracellular matrix is invested with these mineral salts in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akisaka, T., Kawaguchi, H., Subita, G. P., Shigenaga, Y., and Gay,C. V., 1988, Ultrastructure of matrix vesicles in chick growth plate as revealed by quick freezing and freeze substitution, Calcif. Tissue Int. 42:383

    Article  PubMed  CAS  Google Scholar 

  • Anderson, H. C., 1976, Matrix vesicles of cartilage and bone, in: “The Biochemistry and Physiology of Bone,” G. H. Bourne, ed., Academic Press, New York.

    Google Scholar 

  • Anderson, H. C., 1980, Calcification processes, Pathol. Annu. 15:45

    PubMed  Google Scholar 

  • Anderson, H. C., 1969, Vesicles associated with calcification in the matrix of epiphyseal cartilage., J. Cell Biol. 41: 59

    Article  PubMed  CAS  Google Scholar 

  • Arsenault, A. L., Ottensmeyer, F. P., and Heath, I. B., 1988, An electron microscopic and spectroscopic study of murine epiphyseal cartilage: analysis of fine structure and matrix vesicles preserved by slam freezing and freeze substitution., J. Ultrastruct. Mol. Struct. Res. 98:32

    Article  PubMed  CAS  Google Scholar 

  • Bab, I. A., Muhlrad, A., and Sela, J., 1979, Ultrastructural and biochemical study of extracellular matrix vesicles in normal alveolar bones of rats., Cell Tiss. Res. 202:1

    Google Scholar 

  • Blumenthal, N. C., Posner, A. S., Silverman, L. C., and Rosenberg, L. C., 1979, The effect of proteoglycans on in vitro hydroxyapatite formation., Calcif. Tissue Int. 27:75

    Article  PubMed  CAS  Google Scholar 

  • Bonucci, E., 1967, Fine structure of early cartilage calcification, J. Ultrastruct. Res. 20:33

    Article  CAS  Google Scholar 

  • Boskey, A. L., 1981, Current concepts of the physiology and biochemistry of calcification., Clin. Orthop. Rel. Res. 157:225

    CAS  Google Scholar 

  • Boskey, A. L., and Posner, A. S., 1977, The role of synthetic and bone extracted Ca-Phospholipid-PO4 complexes in hydroxyapatite formation., Calcif. Tiss. Res. 23:251

    Article  CAS  Google Scholar 

  • Boyan-Salyers, B. D., Vogel, J. J., Riggan, L. J., Summers, F., and Howell, R. E., 1978, Application of a microbial model to biologic calcification, Metab. Bone Dis. 1:143

    Article  CAS  Google Scholar 

  • Brown, W. E., 1966, Crystal growth of bone mineral., Clin. Orthop. Rel. Res. 44:205

    CAS  Google Scholar 

  • Brown, W. E., Schroeder, L. W., and Ferris, J. S., 1979, Interlayering of crystalline octacalcium phosphate and hydroxyapatite., J. Phys. Chem., 83:1385

    Article  CAS  Google Scholar 

  • Cahn, J. W., 1967, On the morphological stability of growing crystals, in: “Crystal Growth,” H. S. Peiser, ed., Pergamon Press Ltd., Oxford.

    Google Scholar 

  • Diamond, A. G., and Neuman, W. F., 1979, Macromolecular inhibitors of calcium phosphate precipitation in bone., in: “Vitamin K Metabolism and Vitamin K Dependent Proteins,” J. W. Suttie, ed., University Park Press, Baltimore.

    Google Scholar 

  • Doi, Y., Okuda, R., Takezawa, Y., Shibata, S., Moriwaki, Y., Wakamatsu, N., Shimizu, N., Moriyama, K., and Shimokawa, H., 1989, Osteonectin inhibiting de novo formation of apatite in the presence of collagen., Calcif. Tissue Int. 44:200

    Google Scholar 

  • Eanes, E. D., 1985, Dynamic aspects of apatite phases of mineralized tissues-model studies., in: “The Chemistry and Biology of Mineralized Tissues,” W. T. Butler ed

    Google Scholar 

  • Eanes, E. D., and Costa, J. L., 1983, X-537A ionophore-mediated calcium transport and calcium phosphate formation in Pressman cells., Calcif. Tissue Int. 35:250

    Google Scholar 

  • Eanes, E. D., Gillessen, I. H., and Posner, A. S., 1965, Intermediate states in the precipitation of hydroxyapatite., Nature, 208: 365

    CAS  Google Scholar 

  • Eanes, E. D., and Hailer, A. W., 1985, Liposome-mediated calcium phosphate formation in metastable solutions., Calcif. Tissue Int. 37:390

    Article  PubMed  CAS  Google Scholar 

  • Eanes, E. D., Hailer, A. W., and Costa, J. L., 1984, Calcium phosphate formation in aqueous suspensions of multilamellar liposomes., Calcif. Tissue Int. 36:421

    Google Scholar 

  • Eanes, E. D., and Meyer, J. L., 1977, The maturation of crystalline calcium phosphates in aqueous suspension at physiologic pH., Calcif. Tissue Res. 23:259

    Article  Google Scholar 

  • Eanes, E. D., and Posner, A. S., 1965, Kinetics and mechanism of conversion of noncrystalline calcium phosphate to crystalline hydroxyapatite., Trans. NY Acad. Sci. 28:233

    Google Scholar 

  • Eanes, E. D., and Posner, A. S., 1970, A note on the crystal growth of hydroxyapatite precipitated from aqueous solutions., Mat. Res. Bull. 5:377

    Article  CAS  Google Scholar 

  • Eidelman, N., Chow, L. C., and Brown, W. E., 1987, Calcium phosphate saturation levels in ultrafiltered serum., Calcif. Tissue Int. 40:71

    Google Scholar 

  • Engstrom, A., and Zetterstrom, R., 1951, Studies on the ultrastructure of bone, Exp. Cell Res., 2:268

    Article  CAS  Google Scholar 

  • Garside, J., 1982, Nucleation, in: “Biological Mineralization and Demineralization.,” G. H. Nancollas, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Glimcher, M. J., 1959, Molecular biology of mineralized tissues with particular reference to bone., Rev. Mod. Phys. 31: 359

    Google Scholar 

  • Glimcher, M. J., 1976, Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification., in: “Handbook of Physiology-Endocrinology VII.,” Williams and Wilkins Co., Baltimore.

    Google Scholar 

  • Hauschka, P. V., 1985, Osteocalcin and its functional domains., in: “The Chemistry and Biology of Mineralized Tissues.,” W. T. Butler, ed., EBSCO Media, Inc., Birmingham.

    Google Scholar 

  • Katchburian, E., 1973, Membrane-bound bodies as initiators of mineralization of dentine., J. Anat. 116:285

    Google Scholar 

  • Landis, W. J., 1985, Temporal sequence of mineralization in calcifying turkey leg tendon., in: “The Chemistry and Biology of Mineralized Tissues.,” W. T. Butler, ed., EBSCO Media Inc., Birmingham.

    Google Scholar 

  • Lehninger, A. L., 1970, Mitochondria and calcium ion transport., Biochem. J. 119:129

    Google Scholar 

  • Linde, A., Lussi, A., and Crenshaw, M. A., 1989, Mineral induction by immobilized polyanionic proteins., Calcif. Tissue Int. 44:286

    Article  PubMed  CAS  Google Scholar 

  • Maroudas, A., 1979, Physicochemical properties of articular cartilage., in: “Adult Articular Cartilage,” M. A. R. Freeman, ed., Pitman Medical, Tunbridge Wells.

    Google Scholar 

  • Meyer, J. L., 1984, Can biological calcification occur in the presence of pyrophosphate?, Arch. Biochem. Biophys. 231:1

    Article  PubMed  CAS  Google Scholar 

  • Meyer, J. L., and Eanes, E. D., 1978, A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation., Calcif. Tissue Res. 25:59

    Article  PubMed  CAS  Google Scholar 

  • Morris, D. C., Vaananen, H. K., and Anderson, H. C., 1983, Matrix vesicle calcification in rat epiphyseal growth plate

    Google Scholar 

  • cartilage prepared anhydrously for electron microscopy., Metab. Bone Dis. 5:131

    Google Scholar 

  • Nelson, D. G. A., Salimi, H., and Nancollas, G. H., 1986, Octacalcium phosphate and apatite overgrowths: A crystallographic and kinetic study., J. Colloid Interface Sci., 110:32

    Google Scholar 

  • Neuman, W. F., and Neuman, M. W., 1958, “The Chemical Dynamics of Bone Mineral,” University of Chicago Press, Chicago. Nielsen, A. E., 1964, “Kinetics of Precipitation,” Pergamon Press, Oxford.

    Google Scholar 

  • Nylen, M. U., Scott, D. B., and Mosley, V. M., 1960, Mineralization of turkey leg tendon. II. Collagen-mineral relations revealed by electron and x-ray microscopy, in: “Calcification in Biological Systems.,” R. F. Sognnaes, ed., AAAS, Washington.

    Google Scholar 

  • Price, P. A., Otsuka, A. S., Poser, J. W., Kristaponis, J., and Raman, N., 1976, Characterization of a 7-Carboxyglutamic acid-containing protein from bone., Proc. Natl. Acad. Sci. USA, 73:1447

    Google Scholar 

  • Sauer, G. R., and Wuthier, R. E., 1988, Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase-released matrix vesicles in vitro., J. Biol. Chem., 263:13718

    PubMed  CAS  Google Scholar 

  • Schiffmann, E., Martin, G. R., and Miller, E. J., 1970, Matrices that calcify, in: “Biological Calcification: Cellular and Molecular Aspects,” H. Schraer, ed., Appleton-CenturyCrofts, New York.

    Google Scholar 

  • Sutfin, L. V., Holtrop, M. E., and Ogilvie, R. E., 1971, Microanalysis of individual mitochondrial granules with diameters less than 1000 A., Science 174: 947

    CAS  Google Scholar 

  • Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L., and Martin, G. R., 1981, Osteonectin, a bone-specific protein linking mineral to collagen., Cell, 26: 99

    Article  PubMed  CAS  Google Scholar 

  • Termine, J. D., Eanes, E. D., and Conn, K. M., 1980, Phosphoprotein modulation of apatite crystallization., Calcif. Tissue Int. 31:247

    Article  PubMed  CAS  Google Scholar 

  • Traub, W., Jodaikin, A., and Weiner, S., 1985, Diffraction studies of enamel protein-mineral structural relations., in: “The Chemistry and Biology of Mineralized Tissues,” W. T. Butler, ed., EBSCO Media, Inc., Birmingham.

    Google Scholar 

  • Veis, A., 1985, Phosphoproteins of dentin and bone., in: “The Chemistry and Biology of Mineralized Tissues.,” W. T. Butler, ed., EBSCO Media, Inc., Birmingham.

    Google Scholar 

  • Walton, A. G., 1967, “The Formation and Properties of Precipitates,” Interscience, New York.

    Google Scholar 

  • Weinstock, M., and Leblond, C. P., 1973, Radioautographic visualization of the deposition of a phosphoprotein at the mineralization front in the dentin of the rat incisor., J. Cell Biol. 56: 838

    Article  PubMed  CAS  Google Scholar 

  • Wuthier, R. E., 1977, Electrolytes of isolated epiphyseal chondrocytes, matrix vesicles, and extracellular fluid., Calcif. Tissue Res. 23:125

    Article  PubMed  CAS  Google Scholar 

  • Wuthier, R. E., 1982, A review of the primary mechanism of endochondral calcification with special emphasis on the role of cells, mitrochondria and matrix vesicles., Clin. Orthop. 169: 219

    PubMed  CAS  Google Scholar 

  • Wuthier, R. E., 1982, The role of phospholipid-calcium-phosphate complexes in biological mineralization., in: “The Role of Calcium in Biological Systems.,” L. J. Anghileri, and A. M. Tuffet-Anghileri, eds., CRC Press, Boca Raton.

    Google Scholar 

  • Wuthier, R. E., and Register, T. C., 1985, Role of alkaline phosphatase, a polyfunctional enzyme, in mineralizing tissues., in: “The Chemistry and Biology of Mineralized Tissues,” W. T. Butler, ed., EBSCO Media, Inc., Birmingham.

    Google Scholar 

  • Yamada, M., 1976, Ultrastructural and cytochemical studies on the calcification of the tendon bone joint., Histol. Jap. 39:347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this paper

Cite this paper

Eanes, E.D. (1990). Physico-Chemical Principles of Biomineralization. In: Pecile, A., de Bernard, B. (eds) Bone Regulatory Factors. NATO ASI Series, vol 184. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1508-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1508-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1510-1

  • Online ISBN: 978-1-4757-1508-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics