Topological Concepts in Nuclear Physics: The Deuteron as a Bi-Skyrmion

  • L. C. Biedenharn
  • E. Sorace
  • M. Tarlini


This conference has been organized by Bruno Gruber around the theme of symmetry, and it is useful therefore to begin by recalling that symmetry groups appear in quantal physics in three distinct ways: (a) linearly in the Wigner mode, (b) non-linearly in the Heisenberg mode, and (c) topologically in what might well be called the Dirac mode, since the first application occurred in Dirac’s famous magnetic monopole paper. The subject to be discussed here will actually involve all three of these modes.


Baryon Number Magnetic Monopole Skyrme Model Minimal Energy Configuration Quantal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. H. R. Skyrme, Proc. Roy. Soc. A260 (1961) 127.CrossRefGoogle Scholar
  2. 2.
    L. C. Biedenharn and J. D. Louck, “The Racah-Wigner Algebra in Quantum Theory”, in Encl. of Math. and its Applications, Vol. 9, (G.-C. Rota, Ed.) (Addison-Wesley Publ. Co., Reading, MA 1981). A detailed review with citations of the original papers is given in Topic 2, “Monopolar Harmonics”, p. 201 ff.Google Scholar
  3. 3.
    G. Adkins, C. Nappi and E. Witten, Nucl. Phys. B228 (1983) 552.CrossRefGoogle Scholar
  4. 4.
    G. Holzwarth and B. Schwesinger, “Baryons in the Skyrme Model”, Reports on Progress in Physics, (to be published).Google Scholar
  5. 5.
    G. ‘t Hooft, Nucl. Phys. B72 (1974) 461;CrossRefGoogle Scholar
  6. G. ‘t Hooft, Nucl. Phys. B75 (1974) 461.CrossRefGoogle Scholar
  7. 6.
    E. Witten, Nucl. Phys. B156 (1979) 269.CrossRefGoogle Scholar
  8. 7.
    E. Witten, Nucl. Phys. B223 (1983) 422;Google Scholar
  9. E. Witten, Nucl. Phys. B223 (1983) 433.Google Scholar
  10. 8.
    R. Bott, Bull. Soc. Math. France, 84 (1956) 251.Google Scholar
  11. 9.
    E. Guadagnini, Nucl. Phys. B236 (1984) 35.CrossRefGoogle Scholar
  12. 10.
    L.C. Biedenharn, Y. Dothan and A. Stern, Phys. Lett. 146D (1984) 289.Google Scholar
  13. 11.
    L.C. Biedenharn and Yossef Dothan, “Monopolar Harmonics in SU3f as Eigenstates of the Skyrme-Witten Model for Baryons”, pp. 19–34 in “From SU3 to Gravity” (Neeman Festschrift), ( Cambridge University Press, Cambridge, U.K. ) 1986.Google Scholar
  14. 12.
    A. Jackson, A.D. Jackson and V. Pasquier, Nucl. Phys. A432 (1985) 567.CrossRefGoogle Scholar
  15. 13.
    Eric Braaten and Larry Carson, “Nuclei in the Skyrme Model”, preprint ANL-HEP-CP-85–67 presented at the LANL Workshop on Rel. Dyn. and Quarks in Nuclear Physics, June (1985), (to be published).Google Scholar
  16. 14.
    E. Sorace and M. Tarlini, Phys. Rev. D33 (1986) 253.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • L. C. Biedenharn
    • 1
  • E. Sorace
    • 2
  • M. Tarlini
    • 2
  1. 1.Duke UniversityDurhamUSA
  2. 2.Università di FirenzeFirenzeItalia

Personalised recommendations