Relativistic Scattering of Composite Particles

  • Raj Wilson

Abstract

In the New Testaments we read “Through faith we understand that the worlds were framed by the word of God, so that things which are seen were not made of things which do appear” - Hebrews 11:3. Perhaps this biblical verse may aptly describe the present day scientific endeavors in probing composite particles and in understanding the structure of matter. Whether this verse implies the belief on the so-called quark confinement, or on unknown symmetries, or on the notion of wholeness and the implicate order or on something else is left to our reader’s discretion. However, the verse does seem to set up the pace of our continuing scientific discoveries as we observe that what we could not “see” in the past can be seen at the present and possibly what we cannot “see” at the present may be seen in the future and so on and on, till we understand the constituents of matter in terms of elementary particles which may be made up of things which may not appear.

Keywords

Composite Particle Wigner Function Cartan Subalgebra Wave Operator Partial Wave Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. O. Barut, Symmetry Principles at High Energy, ed. B. Kursunoglu (W. H. Freeman, San Francisco, 1964)Google Scholar
  2. A. O. Barut, High-Energy Physics and Elementary Particles (International Atomic Energy Agency, Vienna, 1965)Google Scholar
  3. A. O. Barut, Non-Compact Groups in Particle Physics, ed. Y. Chow (W. A. Benjamin, New York, 1966)Google Scholar
  4. A. O. Barut, Scattering Theory, ed. A. O. Barut (Gordon and Breach, New York, 1969)Google Scholar
  5. A. O. Barut, Group Systems and Many body Physics, ed. P. Kramer (Vieweg, Braunschweig, 1980).Google Scholar
  6. 2.
    A. O. Barut, Phys. Rev. B135, 839 (1964)CrossRefGoogle Scholar
  7. A. O. Barut, Phys. Rev. Letts. 20, 893 (1968)CrossRefGoogle Scholar
  8. R. Wilson, Nucl. Phys. B68, 157 (1974).CrossRefGoogle Scholar
  9. 3.
    A. O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory (University of Canterbury Press, Christ Church, 1972) and the references therein.Google Scholar
  10. A. O. Barut and R. Raczka, Theory of Group Representations and Applications (Polish Scientific, Warszawa, 1980) and the references therein.Google Scholar
  11. A. Inomata and D. Peak, Prog. Theor. Phys. 42, 134 (1969). R. F. Peierls and R. Wilson, Ann. Phys. 81, 15 (1973).Google Scholar
  12. A. O. Barut and R. Wilson, Phys. Rev. A13, 918 (1976).CrossRefGoogle Scholar
  13. 4.
    C. Fronsdal, Phys. Rev. 156, 1653, 1665 (1967)CrossRefGoogle Scholar
  14. C. Fronsdal, Phys. Rev. 168, 1845 (1968)CrossRefGoogle Scholar
  15. C. Fronsdal, Phys. Rev. 171, 1811 (1968)CrossRefGoogle Scholar
  16. C. Fronsdal, Phys. Rev. 179, 1513 (1969)CrossRefGoogle Scholar
  17. C. Fronsdal, Phys. Rev. 182, 1564 (1969)CrossRefGoogle Scholar
  18. C. Fronsdal, Phys. Rev. 185, 1768 (1969)CrossRefGoogle Scholar
  19. C. Fronsdal and L. E. Lundberg, Phys. Rev. D1 3247 (1970)Google Scholar
  20. C. Fronsdal and R. W. Huff, Phys. Rev. D3, 933 (1971)Google Scholar
  21. C. Fronsdal, Phys. Rev. D4, 1689 (1971).Google Scholar
  22. 5.
    Y. Nambu, Prog. Theor. Phys. Suppl. 37–38, 368 (1966)Google Scholar
  23. Y. Nambu, Phys. Rev. 160, 1171 (1967).CrossRefGoogle Scholar
  24. 6.
    A. O. Barut, A. Inomata and R. Wilson, Relativistic Quantum Theory of Two Interacting Composite Particles - I: Compton Scattering, to be published. This paper contains all the details and extensive references.Google Scholar
  25. 7.
    N. Ja. Wilenkin, Special Functions and the theory of Group Representations, (American Math. Soc., Providence, 1968).Google Scholar
  26. W. Miller, Jr., Lie Theory and Special Functions (Academic, New York, 1968).Google Scholar
  27. 8.
    L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, (Addison-Wesley, Mass. 1981).Google Scholar
  28. 9.
    V. Bargmann, Ann. Maths. 48, 568 (1947).Google Scholar
  29. 10.
    A. O. Barut and E. C. Phillips, Comm. Math. Phys. 8, 52 (1968).CrossRefGoogle Scholar
  30. 11.
    L. C. Biedenharn, J. Math. Phys. 2, 433 (1961).CrossRefGoogle Scholar
  31. 12.
    A. Z. Dolginov and I. N. Toptygin, Sov. Phys. JETP 8, 550 (1959). A. Sciarrino and M. Toller, J. Math. Phys. 8, 1252 (1967).Google Scholar
  32. 13.
    N. Ja. Vilenkin, E. L. Akim and A. A. Levin, Dokl. Akad. Nauk SSSR 112, 987 (1957), (in Russian)Google Scholar
  33. W. Miller, Jr., Comm. Pure App. Math. 17 527, (1964)Google Scholar
  34. S. Ström, Ark. Fysik 30, 267 (1965).Google Scholar
  35. 14.
    E. Celeghini and M. Tarlini, Nuovo Cimento B61, 265 (1982)Google Scholar
  36. E. Celeghini and M. Tarlini, Nuovo Cimento B65, 172 (1982)Google Scholar
  37. E. Celeghini and M. Tarlini, Nuovo Cimento B68, 133 (1982).CrossRefGoogle Scholar
  38. 15.
    Tachyons, Monopoles and Related Topics, ed. E. Recami (North-Holland, Amsterdam, 1978).Google Scholar
  39. 16.
    C. G. Jung, Synchronicity (Princeton University, Princeton, 1960).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Raj Wilson
    • 1
  1. 1.Department of MathematicsUniversity of TexasSan AntonioUSA

Personalised recommendations