Symmetry-Breaking in Biological Cells

  • J. A. Tuszyński


The concept of symmetry breaking has played a prominent role in the understanding of novel phenomena in physics, chemistry, and recently, biology. Since a spontaneously broken symmetry is associated with a degenerate ground state which is not invariant under the full transformation group of the Hamiltonian, it has been described as a growth of complexity out of simplicity1. As demonstrated by Landau2 any change in the symmetry of the system (i.e. its ground state) must be sudden and is manifested by the emergence of a non-zero order parameter in the unsymmetric phase. This ordered phase is maintained by gapless energy bosons called Goldstone modes which are instrumental in propagating the order over long ranges3. Depending on the system these collective excitations take the form of magnons, phonons, excitons, polarons, etc. They can take the system from one vacuum state to another. The long-range order introduces new length scales which in systems with complex order parameters, e.g. lasers, super-fluids, superconductors, may manifest itself in phase coherence. The collective, mean-field behavior results in stability sometimes referred to as generalized rigidity1. However, certain deviations from spatial uniformity are present, as exemplified by collective excitations themselves and by critical fluctuations which may accompany them. Moreover, Goldstone bosons may condense creating topological singularities (defect structures) possibly solitonic in character.


Coherent State Break Symmetry Heat Bath Collective Excitation Energy Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Anderson, “Basic Notions of Condensed Matter Physics”, The Benjamin/Cummings, Menlo Park (1984).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, “Statistical Physics”, Pergamon Press, London (1959).Google Scholar
  3. 3.
    H. Umezawa, H. Matsumoto and M. Tachiki, “Thermo Field Dynamics and Condensed States”, North-Holland, Amsterdam (1982).Google Scholar
  4. 4.
    H. Frauenfelder, Helv. Phys. Acta 57: 165 (1984).Google Scholar
  5. 5.
    A. Szent-Györgi, Nature 148: 157 (1941).CrossRefGoogle Scholar
  6. 6.
    H. Fröhlich, Nature 228: 1093 (1970).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Fröhlich, IEEE Trans. MIT 26: 613 (1978).Google Scholar
  8. 8.
    S. J. Williamson and L. Kaufman, J. Magn. Magn. Mat. 22: 129 (1981).CrossRefGoogle Scholar
  9. 9.
    B. T. Matthias, Organic ferroelectricity, in: “From Theoretical Physics to Biology”, M. Marois, ed., S. Karger, Basel (1973).Google Scholar
  10. 10.
    T. Izuyama and Y. Akutus, J. Phys. Soc. Jap. 51: 50 (1982).CrossRefGoogle Scholar
  11. 11.
    H. A. Pohl, Coll. Phenom. 221 (1981).Google Scholar
  12. 12.
    I. Prigogine, “From Being to Becoming”, Freeman, San Francisco (1980).Google Scholar
  13. 13.
    P. Ortoleva, Symmetry-breaking in far-from equilibrium order, in: “Symmetries in Science”, B. Gruber and R. S. Millman, eds., Plenum Press, New York (1980).Google Scholar
  14. 14.
    J. D. Cowan, Symmetry-breaking in embryology and in neurology, ibid.Google Scholar
  15. 15.
    H. Haken, “Synergetics, an Introduction”, Springer, Berlin (1980).Google Scholar
  16. 16.
    J. A. Tuszynski, Phys. Lett. A108: 177 (1985).CrossRefGoogle Scholar
  17. 17.
    Z. Szabo and F. Kaiser, Z. Naturforsch. C37: 733 (1982).Google Scholar
  18. 18.
    J. A. Tuszynski, Phys. Lett. A107: 225 (1985).CrossRefGoogle Scholar
  19. 19.
    Y. H. Ichikawa, N. Yajima and K. Takano, Prog. Theor. Phys. 55: 1723 (1976).CrossRefGoogle Scholar
  20. 20.
    A. C. Scott, P. S. Lomdahl and J. C. Eilbeck, Chem. Phys. Lett. 113: 29 (1985).Google Scholar
  21. 21.
    S. N. Pnevmatikos, Solitons in nonlinear atomic chains, in: “Singularities and Dynamical Systems”, S. N. Pnevmatikos, ed., Elsevier Science, Amsterdam (1985).Google Scholar
  22. 22.
    R. Paul, J. A. Tuszynski and R. Chatterjee, Phys. Rev. A30: 2676 (1984).CrossRefGoogle Scholar
  23. 23.
    D. J. Thouless, Percolation and localization, in: “Ill-Condensed Matter”, North-Holland, New York (1979).Google Scholar
  24. 24.
    F. W. Cummings and J. R. Johnston, Phys. Rev. 151: 105 (1966).CrossRefGoogle Scholar
  25. 25.
    T. M. Wu and S. Austin, J. Theor. Biol. 71: 209 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Haug and H. H. Kranz, Z. Phys. B53: 151 (1983).CrossRefGoogle Scholar
  27. 27.
    R. J. Glauber and V. I. Manko, Academy of Sciences of USSR Preprint #96, Moscow (1984).Google Scholar
  28. 28.
    J. A. Tuszynski, R. Paul, R. Chatterjee and S. R. Sreenivasan, Phys. Rev. 30: 2666 (1984).Google Scholar
  29. 29.
    R. Paul, Phys. Lett. A96: 263 (1983).CrossRefGoogle Scholar
  30. 30.
    T. M. Wu and S. Austin, Phys. Lett. A65: 74 (1978).CrossRefGoogle Scholar
  31. 31.
    M. Sargent III, M. O. Scully and W. E. Lamb, Jr., “Laser Physics”, Addison-Wesley, London (1974).Google Scholar
  32. 32.
    N. Bekki and K. Nozaki, unpublished report (1984).Google Scholar
  33. 33.
    A. S. Davydov, “Biology and Quantum Mechanics”, Pergamon, New York (1982).Google Scholar
  34. 34.
    P. S. Lomdahl and W. C. Kerr, Phys. Rev. Lett. 55: 1235 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    T. Arimitsu and H. Umezawa, Prog. Theor. Phys. 74: 429 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • J. A. Tuszyński
    • 1
  1. 1.Department of PhysicsMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations