Skip to main content

Squeezed States and Quadratic Hamiltonians: A Wigner Distribution Approach

  • Chapter
Book cover Symmetries in Science II
  • 145 Accesses

Abstract

For some time now there has been much interest in a special class of quantum states of the radiation field known as squeezed coherent states or simply squeezed states1–5. In fact the first experimental observation of squeezing has been reported very recently6. Squeezed states form a generalization of the coherent states in some sense, the latter being states which behave in the most possible classical way7. Whereas coherent states are minimum uncertainty states having equal fluctuations (zero-point fluctuations) in the two quadratures of the annihilation operator of the field mode, squeezed states have less fluctuation in one at the expense of increased fluctuation in the other quadrature in a manner consistent with the uncertainty principle. From an operator point of view squeezed states are produced from the coherent states by what is equivalent to the Bogolubov transformation. It is interesting to note that different authors discovered or rediscovered the squeezed states under different names - two photon coherent states8, new coherent states9, correlated coherent states10, pulsating states11 and twisted states12 - emphasising different view points of what is essentially one and the same thing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.F. Walls, Squeezed states of light, Nature 306: 141 (1983).

    Article  Google Scholar 

  2. M.M. Nieto, What are squeezed states like? (Los Alamos Preprint).

    Google Scholar 

  3. H. Takahasi, Information theory of quantum-mechanical channels, Ad.Commun. Syst. 1: 227 (1965).

    Google Scholar 

  4. D. Stoler, Equivalence classes of minimum uncertainty packets, Phys.Rev.D 1: 3217 (1970).

    Article  Google Scholar 

  5. J.N. Hollenhorst, Quantum limits on resonant-mass gravitational-radiation detectors, Phys.Rev.D 19: 1669 (1979).

    Article  Google Scholar 

  6. T.S. Santhanam, Generalized coherent states, in “Symmetries in Science”, B. Gruber and R.S. Millman, eds., Plenum: New York (1980).

    Google Scholar 

  7. M. Venkata Satyanarayana, Generalized coherent states and generalized squeezed coherent states, Phys.Rev.D 132: 400 (1985).

    Article  Google Scholar 

  8. J.R. Klauder, These proceedings.

    Google Scholar 

  9. R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, and J.F. Valley, Observation of squeezed states generated by four-wave mixing in an optical cavity, Phys.Rev.Lett. 55: 2409 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. J.R. Klauder, and E.C.G. Sudarshan, “Fundamentals of Quantum Optics”, Benjamin, New York (1968).

    Google Scholar 

  11. H.P. Yuen, Two photon coherent states of the radiation field, Phys.Rev.A 13: 2226 (1976).

    Article  Google Scholar 

  12. A.K. Rajagopal, and J.T. Marshal, New coherent states with applications to time-dependent systems, Phys.Rev.A. 26: 2977 (1982).

    Article  Google Scholar 

  13. V.V. Dodonov, E.V. Kurmyshev, and V.I. Manko, Generalized uncertainty relations and correlated coherent states, Phys.Lett. 79A: 150 (1980).

    Article  Google Scholar 

  14. I. Fugiwara, and K. Miyoshi, Pulsating states for quantal harmonic oscillator, Prog.Theor.Phys. 64: 715 (1980).

    Article  Google Scholar 

  15. H.P. Yuen, Contractive states and the standard quantum limits for monitoring free-mass positions, Phys.Rev.Lett. 51: 719 (1983).

    Article  Google Scholar 

  16. H.P. Yuen, and J.H. Shapro, Optical communication with two photon coherent states - Part I: Quantum state propagation and quantum noise reduction, IEEE Trans. Inform. Theory IT-24: 657 (1978).

    Google Scholar 

  17. J.H. Shapiro, H.P. Yuen, and Jesus A. Machado Mata, Optical Communication with two-photon coherent states-Part II: Photoemissive detection and structured receiveri performance, IEEE Trans. Inform. Theory IT- 25: 179 (1979).

    Article  Google Scholar 

  18. C.M. Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, and M. Zimmermann, On the measurement of weak classical force coupled to a quantum-mechanical oscillator I.Issues of principle, Rev.Mod.Phys. 52: 341 (1980).

    Article  Google Scholar 

  19. P. Broadbridge and C.A. Hurst, Canonical forms for quadratic Hamiltonians, Physica 108A: 39 (1981).

    Article  Google Scholar 

  20. P. Broadbridge and C.A. Hurst, Existence of complex structure for quadratic Hamiltonians, Ann.Phys. 131: 104 (1981).

    Article  Google Scholar 

  21. M. Moshinsky, and T.H. Seligman, Canonical transformations to action and angle variables and their representations in quantum mechanics, Ann.Phys. 114: 243 (1978).

    Article  Google Scholar 

  22. R. Simon, E.C.G. Sudarshan, and N. Mukunda, Generalized rays in first-order optics: Transformation properties of Gaussian Schell-model fields, Phys.Rev.A 29: 3273 (1984).

    Article  Google Scholar 

  23. M. Hillery, R.F. O’Connell, M.O. Scully, and E.P. Wigner, Distribution functions in Physics: Fundamentals, Phys.Rep. 106: 121 (1984).

    Article  Google Scholar 

  24. N. Mukunda, A.P. Balachandran, Jan S. Nilsson, E.C.G. Sudarshan, and F. Zaccaria, Evolution, symmetry and canonical structure in dynamics, Phys.Rev.D 23: 2189 (1981).

    Article  Google Scholar 

  25. H.J. Carmichael, G.J. Milburn, and D.F. Walls, Squeezing in a detuned parametric amplifier, J.Phys.A 17: 469 (1984).

    Article  Google Scholar 

  26. M.T. Raiford, Degenerate parametric amplification with time-dependent pump amplitude and phase Phys.Rev.A 9: 2060 (1974).

    Article  Google Scholar 

  27. R. Simon, E.C.G. Sudarshan, and N. Mukunda, Anisotropic Gaussian Scheel-model beams: Passage through first order optical systems and associated invariants, Phys.Rev.A 31: 2419 (1985).

    Article  PubMed  Google Scholar 

  28. G.J. Milburn, Multimode minimum uncertainty squeezed states, J.Phys.A 17: 737 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simon, R. (1986). Squeezed States and Quadratic Hamiltonians: A Wigner Distribution Approach. In: Gruber, B., Lenczewski, R. (eds) Symmetries in Science II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1472-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1472-2_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1474-6

  • Online ISBN: 978-1-4757-1472-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics