Group Theoretical Approaches to Many-Electron Correlation Problem

  • Josef Paldus

Abstract

The unitary group approach (UGA) to many-fermion correlation problem may be regarded as a direct outgrowth of the original ideas as laid down by Hermann Weyll in his “Gruppentheorie and Quantenmechanik”. Although these advances have in the past been overshadowed by the simplicity of Slater determinant based formalisms, and have even been referred tol at one time as a “group pest”, today we find Weyl’s original ideas very much alive and well, particularly in the many-electron correlation problem. For instance, the Gelfand-Tsetlin (GT) representation theory’ of the unitary group is a natural extension of Weyl’s branching rule presented in the very last Section of his book.1

Keywords

Matrix Element Configuration Interaction Step Number Slater Determinant Full Configuration Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Weyl, “Gruppentheorie und Quantenmechanik”, Hirzel, Leipzig; Germany, (1928)Google Scholar
  2. H. Weyl, English translation: “The Theory of Groups and Quantum Mechanics”, Dover, New York (1964).Google Scholar
  3. 2.
    I. M. Gelfand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71, 825, 1070 (1950).Google Scholar
  4. 3.
    P. Jordan, Z. Phys. 94, 531 (1935).CrossRefGoogle Scholar
  5. 4.
    M. Moshinsky, in “Many-Body Problems and Other Selected Topics in Theoretical Physics”, M. Moshinsky, T. A. Brody and G. Jacob, eds., p. 289, Gordon and Breach, New York (1966)Google Scholar
  6. M. Moshinsky, separately as “Group Theory and the Many-Body Problem”, Gordon and Breach, New York (1968).Google Scholar
  7. 5.
    J. Paldus, J. Chem. Phys. 61, 5321 (1974).CrossRefGoogle Scholar
  8. 6.
    J. Paldus, in “Theoretical Chemistry: Advances and Perspectives”, Vol. 2, H. Eyring and D. Henderson, eds., p. 131, Academic Press, New York (1976).Google Scholar
  9. 7.
    J. Paldus, Int. J. Quantum Chem., Symp. 9, 165 (1975).CrossRefGoogle Scholar
  10. 8.
    J. Paldus, Phys. Rev. A14, 1620 (1976).CrossRefGoogle Scholar
  11. 9.
    I. Shavitt, Int. J. Quantum Chem., Symp. 11, 131 (1977)Google Scholar
  12. I. Shavitt, Symp. 12, 5 (1978).Google Scholar
  13. 10.
    J. Paldus and M. J. Boyle, Phys. Scripta 21, 295 (1980).CrossRefGoogle Scholar
  14. 11.
    M. Downward and M. A. Robb, Theor. Chim. Acta 46, 129 (1977)CrossRefGoogle Scholar
  15. D. Hegarty and M. A. Robb, Mol. Phys. 38, 1795 (1979).CrossRefGoogle Scholar
  16. 12.
    P. E. M. Siegbahn, J. Chem. Phys. 70, 5391 (1979)CrossRefGoogle Scholar
  17. P. E. M. Siegbahn, J. Chem. Phys. 72, 1647 (1980).CrossRefGoogle Scholar
  18. 13.
    B. R. Brooks and H. F. Schaefer, III, J. Chem. Phys. 70, 5092 (1979).Google Scholar
  19. 14.
    B. R. Brooks, W. D. Laidig, P. Saxe, N. C. Handy and H. F. Schaefer, III. Phys. Scripta 21, 312 (1980)CrossRefGoogle Scholar
  20. B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi and H. F. Schaefer, III, J. Chem. Phys. 72, 4652 (1980).Google Scholar
  21. 15.
    P. E. M. Siegbahn, J. Chem. Phys. 75, 2314 (1981)CrossRefGoogle Scholar
  22. P. E. M. Siegbahn, Chem. Phys. 66, 443 (1982).CrossRefGoogle Scholar
  23. 16.
    H. Lischka, R. Shepard, F. D. Brown and I. Shavitt, Int. J. Quantum Chem., Symp. 15, 91 (1981).Google Scholar
  24. 17.
    V. R. Saunders and J. H. van Lenthe, Mol. Phys. 48, 923 (1983).CrossRefGoogle Scholar
  25. 18.
    P. Saxe, D. J. Fox, H. F. Schaefer, III, and N. C. Handy, J. Chem. Phys. 77, 5584 (1982).CrossRefGoogle Scholar
  26. 19.
    P. E. M. Siegbahn, Chem. Phys. Lett. 109, 417 (1984).CrossRefGoogle Scholar
  27. 20.
    J. Paldus, in “Electrons in Finite and Infinite Structures”, P. Phariseau and L. Scheire, eds., p. 411, Plenum, New York (1977).CrossRefGoogle Scholar
  28. 21.
    F. A. Matsen, Advan. Quantum Chem. 11, 223 (1978).CrossRefGoogle Scholar
  29. 22.
    J. Paldus, in “Group Theoretical Methods in Physics”, Lecture Notes in Physics, Vol. 94, W. Beiglböck, A. Böhm and E. Takasugi, eds., p. 51, Springer, New York (1979).CrossRefGoogle Scholar
  30. 23.
    J. Hinze, ed., “The Unitary Group for the Evaluation of Electronic Energy Matrix Elements”, Lectures Notes in Chemistry, Vol. 22, Springer, Berlin (1981).Google Scholar
  31. 24.
    M. A. Robb and U. Niazi, Comp. Phys. Rep. 1, 127 (1984).CrossRefGoogle Scholar
  32. 25.
    R. Pauncz, “Spin Eigenfunctions: Construction and Use”, Plenum, New York (1979).CrossRefGoogle Scholar
  33. 26.
    S. Wilson, “Electron Correlation in Molecules”, Clarendon, Oxford (1984).Google Scholar
  34. 27.
    J. Nek and J. Paldus, Int. J. Quantum Chem. 12, 875 (1977)CrossRefGoogle Scholar
  35. Nek and J. Paldus, Phys. Scripta 21, 364 (1980)CrossRefGoogle Scholar
  36. J. Cizek, M. Clay and J. Paldus, Phys. Rev. A22, 793 (1980)CrossRefGoogle Scholar
  37. B. G. Adams, J. Ci ek and J. Paldus, Int. J. Quantum. Chem. 21, 153 (1982)CrossRefGoogle Scholar
  38. G. Adams, J. Ci ek and J. Paldus, Advan. Quantum. Chem. 18, in press and references therein.Google Scholar
  39. 28.
    A. O. Barut, “Dynamical Groups and Generalized Symmetries in Quantum Theory”, University of Canterbury, Christchurch, New Zealand (1971).Google Scholar
  40. 29.
    F. Iachello and R. D. Levine, J. Chem. Phys. 77, 3046 (1982)CrossRefGoogle Scholar
  41. 0.
    S. van Roosmalen, F. Iachello, R. D. Levine, and A. E. L. Dieperink, J. Chem. Phys. 79, 2515 (1983)CrossRefGoogle Scholar
  42. O. S. van Roosmalen, I. Benjamin and R. D. Levine, J. Chem. Phys. 81, 5986 (1984)CrossRefGoogle Scholar
  43. R. D. Levine, J. Phys. Chem. 89, 2122 (1985) and references therein.Google Scholar
  44. 30.
    Y. Alhassid, F. Iachello and R. D. Levine, Phys. Rev. Lett. 54, 1746 (1985).PubMedCrossRefGoogle Scholar
  45. 31.
    F. Iachello, this volume.Google Scholar
  46. 32.
    P. C. Ojha, SO(2,1) Lie Algebra and the Jacobi-Matrix Method for Scattering, preprint.Google Scholar
  47. 33.
    P.-0. Löwdin, Advan. Chem. Phys. 2, 207 (1959).Google Scholar
  48. 34.
    See, e.g., I. Shavitt, in “Methods of Electronic Structure Theory”, H. F. Schaefer, III, ed., p. 189, Plenum, New York (1977).Google Scholar
  49. 35.
    G. Born and I. Shavitt, J. Chem. Phys. 76, 558 (1982)CrossRefGoogle Scholar
  50. G. Born, Int. J. Quantum Chem., Symp. 16, 633 (1982)Google Scholar
  51. G. Born, Int. J. Quantum Chem., Symp. 28, 335 (1985).CrossRefGoogle Scholar
  52. 36.
    B. Jeziorski and J. Paldus, unpublished results.Google Scholar
  53. 37.
    R. D. Kent and M. Schlesinger, Phys. Rev. B27, 46 (1983)CrossRefGoogle Scholar
  54. P. S. Ponnapalli, M. Schlesinger and R. D. Kent, Phys. Rev. B31, 1258 (1985)CrossRefGoogle Scholar
  55. R. D. Kent, M. Schlesinger and P. S. Ponnapalli, Phys. Rev. B31, 1264 (1985).CrossRefGoogle Scholar
  56. 38.
    S. Rettrup and C. R. Sarma, Phys. Lett. A75, 181 (1980)CrossRefGoogle Scholar
  57. S. Rettrup and C. R. Sarma, J. Phys.: Math. Gen. A13, 2267 (1980).CrossRefGoogle Scholar
  58. 39.
    C. R. Sarma and J. Paldus, J. Math. Phys. 26, 1140 (1985).CrossRefGoogle Scholar
  59. 40.
    J. Paldus and C. R. Sarma, J. Chem. Phys. 83, 5135 (1985).CrossRefGoogle Scholar
  60. 41.
    Cf., e.g., P. Cârskÿ and M. Urban, “Ab Initio Calculations. Methods and Applications in Chemistry”, Lecture Notes in Chemistry, Vol. 16, Springer, Berlin (1980).Google Scholar
  61. 42.
    B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard and H. F. Schaefer, III, in Ref. 23, p. 158.Google Scholar
  62. 43.
    P. E. M. Siegbahn, A. Heiberg, B. O. Roos and B. Levy, Phys. Scripta 21, 323 (1980).CrossRefGoogle Scholar
  63. 44.
    A. Banerjee and J. Simons, Int. J. Quantum Chem. 19, 207 (1981)CrossRefGoogle Scholar
  64. A. Banerjee and J. Simons, J. Chem. Phys. 76, 4548 (1982).CrossRefGoogle Scholar
  65. 45.
    F. A. Matsen, Advan. Quantum Chem. 1, 60 (1964).Google Scholar
  66. 46.
    M. Moshinsky and T. H. Seligman, Ann. Phys. (N.Y.) 66, 311 (1971).CrossRefGoogle Scholar
  67. 47.
    F. A. Matsen, this volume.Google Scholar
  68. 48.
    J. Paldus, Ref. 23, p. 1.Google Scholar
  69. 49.
    R. Serber, Phys. Rev. 45, 461 (1934)CrossRefGoogle Scholar
  70. R. Serber, J. Chem. Phys. 2, 697 (1934).CrossRefGoogle Scholar
  71. 50.
    M. Kotani, Proc. Phys. Math. Soc. Japan 19, 460 (1937)Google Scholar
  72. M. Kotani, A. Amemiya, E. Ishiguro and T. Kimura, “Tables of Molecular Integrals”, Maruzen, Tokyo (1955).Google Scholar
  73. 51.
    W. Duch and J. Karwowski, Int. J. Quantum Chem. 22, 783 (1982)CrossRefGoogle Scholar
  74. W. Duch and J. Karwowski, Comp. Phys. Rep. 2, 93 (1985).CrossRefGoogle Scholar
  75. 52.
    A. P. Jucys, I. B. Levinson, and V. V. Vanagas, “Mathematical Apparatus of the Theory of Angular Momenta”, Israel Program for Scientific Translations, Jerusalem (1962) and Gordon and Breach, New York (1964).Google Scholar
  76. 53.
    D. M. Brink and G. R. Satchler, “Angular Momentum”, 2nd ed., Chap. VII, Clarendon, Oxford (1968).Google Scholar
  77. 54.
    E. ElBaz and B. Castel, “Graphical Methods of Spin Algebras”, Dekker, New York (1972).Google Scholar
  78. 55.
    For a brief outline of this technique and of the required rules, see Appendix I of Ref. 56.Google Scholar
  79. 56.
    J. Paldus, B. G. Adams and J. Cilek, Int. J. Quantum Chem. 11, 813 (1977).CrossRefGoogle Scholar
  80. 57.
    P. E. S. Wormer and J. Paldus, Int. J. Quantum Chem. 16, 1307 (1979)CrossRefGoogle Scholar
  81. P. E. S. Wormer and J. Paldus, 18, 841 (1980).Google Scholar
  82. 58.
    J. Paldus and P. E. S. Wormer, Int. J. Quantum Chem. 16, 1321 (1979).CrossRefGoogle Scholar
  83. 59.
    I. Shavitt, Ref. 23, p. 50.Google Scholar
  84. 60.
    P. W. Payne, Int. J. Quantum Chem. 22, 1085 (1982).CrossRefGoogle Scholar
  85. 61.
    J.-F. Gouyet, R. Schranner and T. HSeligman, J. Phys. A8, 285 (1975).Google Scholar
  86. 62.
    G. W. F. Drake and M. Schlesinger, Phys. Rev. A15, 1990 (1977).Google Scholar
  87. 63.
    B. O. Roos, Chem. Phys. Lett. 15, 153 (1972)CrossRefGoogle Scholar
  88. B. O. Roos and P. E. M. Siegbahn, in “Methods of Electronic Structure Theory”, H. F. Schaefer, III, ed., p. 277, Plenum, New York (1977).Google Scholar
  89. 64.
    M. Bénard, unpublished.Google Scholar
  90. 65.
    H. S. Green, J. Math. Phys. 12, 2106 (1971)CrossRefGoogle Scholar
  91. A. J. Bracken and H. S. Green, J. Math. Phys. 12, 2009 (1971).Google Scholar
  92. 66.
    M. D. Gould, J. Math. Phys. 21, 444 (1980)CrossRefGoogle Scholar
  93. M. D. Gould, J. Math. Phys. 22, 15, 2376 (1981).CrossRefGoogle Scholar
  94. 67.
    M. D. Gould and G. S. Chandler, Int. J. Quantum Chem. 25, 553, 603 (1984)CrossRefGoogle Scholar
  95. M. D. Gould and G. S. Chandler, Int. J. Quantum Chem. 27, (E)787 (1985).Google Scholar
  96. 68.
    M. D. Gould and G. S. Chandler, Int. J. Quantum Chem. 25, 1089 (1984)CrossRefGoogle Scholar
  97. M. D. Gould and G. S. Chandler, Int. J. Quantum Chem. 26, 441 (1984)CrossRefGoogle Scholar
  98. M. D. Gould and G. S. Chandler, Int. J. Quantum Chem. 27, (E)787 (1985).Google Scholar
  99. 69.
    P. E. S. Wormer and A. van der Avoird, J. Chem. Phys. 57, 2498 (1972)CrossRefGoogle Scholar
  100. P. E. S. Wormer, in “Electron Correlation: Proceedings of the Dares-bury Study Weekend” (17–18 November, 1979), M. F. Guest and S. Wilson, eds., p. 49, Science Research Council, Daresbury Laboratory, U.K. (1980).Google Scholar
  101. 70.
    M. D. Gould and J. Paldus, Int. J. Quantum Chem., in press.Google Scholar
  102. 71.
    J. Paldus and M. J. Boyle, Phys. Rev. A22, 2299 (1980)CrossRefGoogle Scholar
  103. M. J. Boyle and J. Paldus, Phys. Rev. A22, 2316 (1980).CrossRefGoogle Scholar
  104. 72.
    L. C. Biedenharn and J. D. Louck, “Angular Momentum and Quantum Mechanics: Theory and Application” Encyclopedia of Mathematics and Its Applications, Vols. 8 and 9, respectively, Addison-Wesley, Reading, Mass. (1981)Google Scholar
  105. L. C. Biedenharn and J. D. Louck, “The Racah-Wigner Algebra in Quantum Theory”, Encyclopedia of Mathematics and Its Applications, Vols. 8 and 9, respectively, Addison-Wesley, Reading, Mass. (1981)Google Scholar
  106. L. C. Biedenharn, A. Giovannini and J. D. Louck, J. Math. Phys. 8, 691 (1967).CrossRefGoogle Scholar
  107. 73.
    R. S. Nikam and C. R. Sarma, J. Math. Phys. 25, 1199 (1984)CrossRefGoogle Scholar
  108. R. S. Nikam, G. G. Sahasrabudhe, and C. R. Sarma, J. Phys. A, in press.Google Scholar
  109. 74.
    M. Ichimura, Progr. Theor. Phys. 33, 215 (1965).CrossRefGoogle Scholar
  110. 75.
    M. D. Gould and J. Paldus, Phys. Rev. A, in press.Google Scholar
  111. 76.
    E. P. Wigner, Phys. Rev. 77, 711 (1950).CrossRefGoogle Scholar
  112. 77.
    Y. Ohnuki and S. Kamefuchi, “Quantum Field Theory and Parastatistics”, Springer, New York (1982).CrossRefGoogle Scholar
  113. 78.
    W. Greenberg and A. M. L. Messiah, Phys. Rev. B138, 1155 (1965).Google Scholar
  114. 79.
    H. S. Green, Phys. Rev. 90, 270 (1953).CrossRefGoogle Scholar
  115. 80.
    A. J. Bracken and H. S. Green, Nuovo Cimento A9, 349 (1972).CrossRefGoogle Scholar
  116. 81.
    M. D. Gould and J. Paldus, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Josef Paldus
    • 1
  1. 1.Department of Applied Mathematics and (GWC)University of WaterlooWaterlooCanada

Personalised recommendations