Double Covering of Diffeomorphisms for Superstrings in Generic Curved Space

  • Yuval Ne’eman
  • Djordje Šijački


The embedding of the superstring in a generic curved space involves the use of world-spinors behaving according to the (infinite) unitary representations of \( \overline {SL} (10,\mathbb{R}) \), the double-covering of the linear group on R 10.


Unitary Representation Maximal Compact Subgroup Dynkin Label Spinor Frame Subgroup Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. B. Green and J. H. Schwarz, Phys. Lett. 109B:448 (1982) and 136B: 367 (1984).Google Scholar
  2. 2.
    M. B. Green and J. H. Schwarz, Phys. Lett. 149B:117 (1984) and 151B:21 (1985); J. Thierry-Mieg, Phys. Lett. 1568: 199 (1985).Google Scholar
  3. 3.
    J. Scherk and J. H. Schwarz, Nucl. Phys. B81: 118 (1974).CrossRefGoogle Scholar
  4. 4.
    M. Jacob, ed., “Dual Theory”, Physics Reports reprint book (North-Holland, Amsterdam/Oxford, American Elsevier, New York) (1974).Google Scholar
  5. 5.
    J. H. Schwarz, ed., “Superstrings” (World-Scientific, Singapore) (1985).Google Scholar
  6. 6.
    E. S. Fradkin and A. A. Tseytlin, Phys. Lett. 158B: 316 (1985).Google Scholar
  7. 7.
    C. Lovelace, Phys. Lett. 135B:75 (1984).Google Scholar
  8. 8.
    Y. Ne’eman and Dj. Šijački, “Spinors for Superstrings in a Generic Curved Space”, TAUP N174/86.Google Scholar
  9. 9.
    Y. Ne’eman and Dj. Šijački, “Superstrings in a Generic Supersymmetric Curved Space”, TAUP N175/86.Google Scholar
  10. 10.
    Y. Ne’eman, Ann. Inst. Henri Poincare A28: 369 (1978).Google Scholar
  11. 11.
    Dj. Šijački and Y. Ne’eman, J. Math. Phys. 26: 2457 (1985).CrossRefGoogle Scholar
  12. 12.
    Y. Ne’eman and Dj. Šijački, Phys. Lett. 157B:267 and 275 (1985).Google Scholar
  13. 13.
    Y. Ne’eman, “Cosmology and Gravitation”, P. G. Bergmann and V. de Sabbata, eds., Nato Advanced Study Inst. Series, (Plenum Press, New York) B58:pp. 177–226 (1980). See in part. page 192.Google Scholar
  14. 14.
    M. H. Goroff and A. Sagnotti, Phys. Lett. 160B:81 (1985).Google Scholar
  15. 15.
    A. M. Polyakov, Phys. Lett. 103B:207 and 211 (1981).Google Scholar
  16. 16.
    Y. Dothan and Y. Ne’eman, “Symmetry Groups in Nuclear and Particle Physics”, F. J. Dyson, ed., (Benjamin, New York) (1966).Google Scholar
  17. 17.
    Y. Ne’eman and DJ. Šijački, J. Math. Phys. 21: 1312 (1980).CrossRefGoogle Scholar
  18. 18.
    Y. Ne’eman and DJ. Šijački, Ann. Phys. (N.Y.), 120: 292 (1979).CrossRefGoogle Scholar
  19. 19.
    L. C. Biedenharn, Phys. Lett. 28B: 537 (1969).CrossRefGoogle Scholar
  20. 20.
    DJ. Sijaéki, J. Math. Phys. 16: 289 (1975).CrossRefGoogle Scholar
  21. 21.
    DJ. Šijački, Ann. Isr. Phys. Soc., 3: 35 (1980).Google Scholar
  22. 22.
    DJ. Šijački, Lect. Notes in Phys. 201: 88 (1984).CrossRefGoogle Scholar
  23. 23.
    A. Cant and Y. Ne’eman, J. Math. Phys. 26: 3180 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Yuval Ne’eman
    • 1
  • Djordje Šijački
    • 2
  1. 1.Sackler Faculty of Exact SciencesTel Aviv University Tel AvivIsrael
  2. 2.Institute of PhysicsBelgradeYugoslavia

Personalised recommendations