Integral Transforms on Homogeneous Spaces of the de Sitter and Conformal Groups

  • P. Moylan


Solutions to many problems in physics often invoke the use of integral transforms which are associated with certain invariance or transformation groups of the particular physical system under consideration. The most well-known example is the use of the Fourier transform in problems of non-relativistic and relativistic physics. There are other integral transforms which are also very useful. Fock’s solution to the bound state hydrogen atom problem1 uses an integral transform which is related, thru stereographic projection from S3 onto R3, to a Knapp-Stein intertwining operator2 of the associated SO0(1,4) transformation group of the problem.3 The Wightman function for a masseless scalar field is a kernel of an intertwining operator between two elementary representations (ERs) of the conformal group.4 We also wish to note the use of the Radon transform in problems of radiography.5


Dirac Equation Homogeneous Space Stereographic Projection Conformal Group Riemannian Symmetric Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Fock, Z.Physik 98 (1935), 145Google Scholar
  2. J. Schwinger, J. Math.Phy., 5, (1964), 1606.CrossRefGoogle Scholar
  3. 2.
    P. Moylan, Fortsch d. Phys., 28, (1980), 269–284.CrossRefGoogle Scholar
  4. 3.
    M. Bander, C. Itzykson, Rev. Mod. Phys., 38, (1966), 330.CrossRefGoogle Scholar
  5. 4.
    G. Mack, Comm. Math. Phys., 55, (1977), 1–28.CrossRefGoogle Scholar
  6. 5.
    S. Helgason, Groups and Geometric Analysis…, (Academic Press, New York, 1984), 130.Google Scholar
  7. 6.
    G. W. Mackey, in Lie Groups and their Representations, Summer School of the Bolyai Janos Mathematical Society, Proceedings, Budapest, 1971, ed. I. M. Gel’fand, (Wiley, London, 1975), 361.Google Scholar
  8. 7.
    I. E. Segal, Proc. Math. Acad. Sci. USA, 79, (1982), 7961.CrossRefGoogle Scholar
  9. 8.
    S. M. Paneitz, I. E. Segal, Journ. Funct. Anal., 47, (1982), 78–142.CrossRefGoogle Scholar
  10. 9.
    P. Moylan, Fortsch. d. Phys., 11, (1986) (in press).Google Scholar
  11. 10.
    G. Mack, I. T. Todorov, Phys. Rev. D., 86, (1972), 1764–1787.Google Scholar
  12. 11.
    Gregg Zuckermann, in Lecture Note in Mathematics 1077, Lie Group Representations III, Proceedings, University of Maryland (1982–1983, Eds. R. Herb., (Springer-Verlag, New York, 1984), P. 437.Google Scholar
  13. 12.
    S. W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, (Cambridge, New York, 1973).CrossRefGoogle Scholar
  14. 13.
    R. Penrose, Proc. Roy. Soc. London, A284, (1965), 163.Google Scholar
  15. 14.
    D. R. Brill, J. A. Wheeler, Rev. Mod. Phys. 29, #3, (1957), 467.Google Scholar
  16. 15.
    G. Warner, Harmonic Analysis on Semisimple Lie Groups I, Springer-Verlag, (New York, 1972).CrossRefGoogle Scholar
  17. 16.
    K. C. Hannabuss, Proc. Camb. Phil. Soc., 70 (1971), 283.CrossRefGoogle Scholar
  18. 17.
    J. Hebda, P. Moylan, Homogeneous Spaces and Associated Group Decompositions, St. Louis University, (1986).Google Scholar
  19. 18.
    J. E. Gilbert, R. A. Kunze, P. A. Tomas, Intertwining Kernels and Invariant Operators in Analysis, Univ. of Texas at Austin, (1984).Google Scholar
  20. 19.
    P.A.M. Dirac, Ann. Math, 36, (1935), 657.CrossRefGoogle Scholar
  21. 20.
    P. Moylan, Dissertation, U.T. Austin (1982).Google Scholar
  22. 21.
    R. Strichartz, Jour. Funct. Anal., 12, (1973), 341–383.Google Scholar
  23. 22.
    W. Rossmann, Jour. Funct. Anal., 30, (1978), 448–447.CrossRefGoogle Scholar
  24. 23.
    A. W. Knapp, B. Speh, Jour. Funct. Anal., 45, (1982), 41.CrossRefGoogle Scholar
  25. 24.
    V. K. Dobrev, Jour. Math. Phys., 26 (2), (1985), 235–251.Google Scholar
  26. 25.
    V. K. Dobrev, P. Moylan, MPI Preprint, MPI-PAE/PTh 49/85, (to appear in Jour. Math. Phys.).Google Scholar
  27. 26.
    A. W. Knapp, E. M. Stein, Ann. Math., 93, (1971) 489.CrossRefGoogle Scholar
  28. 27.
    S. Helgason, Differential Geometry and Symmetric Spaces, Adacemic Press, (New York, 1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • P. Moylan
    • 1
  1. 1.Department of Science and MathematicsSaint Louis UniversityCahokiaUSA

Personalised recommendations