Skip to main content

On Projections of Spinor Spaces onto Minkowski Space

  • Chapter
Symmetries in Science II
  • 141 Accesses

Abstract

The problem of projecting spinor spaces on Minkowski space is rather old. The first formula of this type is

EquationSource% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiEamaaBa % aaleaaiiaacqWF8oqBaeqaaOGaeyypa0Jae8NVdG3aa0baaSqaaGqa % aiaa+fgaaeaacaGGQaaaaOGae83Wdm3aa0baaSqaaiaa+X7aaeaace % GFHbGbaiaacaGFIbaaaOGae8NVdG3aaSbaaSqaaiaa+jgaaeqaaOGa % aiilaiaabccacaqGGaGaaeiiaiaabggacaGGSaGaaeOyaiabg2da9i % aaigdacaGGSaGaaGOmaiaacYcacaqGGaGaaeiiaiaabccacqWF8oqB % cqWF9aqpcaaIWaGaaiilaiaaigdacaGGSaGaaGOmaiaacYcacaaIZa % aaaa!57D0!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${{\rm{x}}_\mu } = \xi _a^*\sigma _\mu ^{\dot ab}{\xi _b},{\rm{ a}},{\rm{b}} = 1,2,{\rm{ }}\mu = 0,1,2,3$$
(1.1)

projecting the two-dirensional complex spinor space C2 onto the light cone in M4. One can consider (1.1) also as a projection on E3. These projection are consistent with the group in the sense that SU(2) transformations of the ξa induce SO(3) transformations of xl, x2, x3 and leave x0 invariant. Transformations of SL(2,C) induce SO(3.1) transformations of xμ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Ja. Vilenkin, Special functions and the theory of group representtations, Translation of mathematical monographs Vol. 22, American Mathematical Society, 1968.

    Google Scholar 

  2. J. Rzewuski, Acta Phys. Polon. 18:549 (1959);

    Google Scholar 

  3. J. Mozrzymas, J.Rzewuski, Bull. Acad. Polon. Sci. Cl. III. 9: 225 (1961).

    Google Scholar 

  4. R. Penrose, Ann. Phys. 10:171 (1960).

    Google Scholar 

  5. L. P. Hughstrone, Twistors and particles in Lecture Notes in Physics, Vol. 97, Springer, 1979.

    Google Scholar 

  6. J. Rzewuski, Reports on Math. Phys.

    Google Scholar 

  7. N. H. Kuiper, Ann. Math. 50: 916 (1949).

    Article  Google Scholar 

  8. A. Crumeyrolle, Reports on Math. Phys.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kocik, J., Rzewuski, J. (1986). On Projections of Spinor Spaces onto Minkowski Space. In: Gruber, B., Lenczewski, R. (eds) Symmetries in Science II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1472-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1472-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1474-6

  • Online ISBN: 978-1-4757-1472-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics