Skip to main content

Factorization-Algebraization-Path Integration and Dynamical Groups

  • Chapter
Symmetries in Science II
  • 143 Accesses

Abstract

Schrödingerl proposed an elegant method of factorization of a quantum-mechanical second-order linear differential equation into a product of two first-order differential operators often referred to as ladder operators. These ladder operators when acting on respective eigenfunctions create new eigenfunctions with a quantum number raised or lowered by one unit. Schrödinger’s method was further systematically studied for a class of second-order linear differential equations in particular by Infeld and Hull2 who have shown that a second-order differential equation which may be brought into the form:

EquationSource% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae8x1dy % 2aa0baaSqaaiaab2gaaeaacaGGIaaaaOGaaiikaGqaaiaa+HhacaGG % PaGaey4kaSIaai4waiab-f8aYnaaBaaaleaacaqGTbaabeaakiaacI % cacaqG4bGaaiykaiabgUcaRiab-T7aSjab-1faDjab-v9aMnaaBaaa % leaacaqGTbaabeaakiaacIcacaqG4bGaaiykaiabg2da9iaaicdaca % GG7aGaaeiiaiaab2gacaqGGaGaeyicI4SaaeiiaiaabMeacaqGobaa % aa!5465!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\phi _{\rm{m}}^(x) + [{\rho _{\rm{m}}}({\rm{x}}) + \lambda ]{\phi _{\rm{m}}}({\rm{x}}) = 0;{\rm{ m }} \in {\rm{ IN}}$$
(0.1)

may be factorized into products of two first-order ladder operators EquationSource% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyqamaaDa % aaleaacaqGTbaabaGaeyySaelaaaaa!39C4!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\rm{A}}_{\rm{m}}^ \pm $$ such that

EquationSource% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGbb % Waa0baaSqaaiaab2gaaeaacqGHRaWkaaGccaqGbbWaa0baaSqaaiaa % b2gaaeaacqGHsislaaaccaGccqWFvpGzdaWgaaWcbaGaaeyBaaqaba % GccaGGOaGaaeiEaiaacMcacqGH9aqpcaGGOaGae83UdWMae8NeI0Ia % e8xSde2aaSbaaSqaaiaab2gaaeqaaOGaaiykaiab-v9aMnaaBaaale % aacaqGTbaabeaakiaacIcacaqG4bGaaiykaiaacYcaaeaacaqGbbWa % a0baaSqaaiaab2gaaeaacqGHsislaaGccaqGbbWaa0baaSqaaiaab2 % gaaeaacqGHRaWkaaGccqWFvpGzdaWgaaWcbaGaaeyBaaqabaGccaGG % OaGaaeiEaiaacMcacqGH9aqpcaGGOaGae83UdWMae8NeI0Iae8xSde % 2aaSbaaSqaaiaab2gacaqGRaGaaeymaaqabaGccaGGPaGae8x1dy2a % aSbaaSqaaiaab2gaaeqaaOGaaiikaiaabIhacaGGPaGaaiOlaaaaaa!6870!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\begin{array}{l} {\rm{A}}_{\rm{m}}^ + {\rm{A}}_{\rm{m}}^ - {\phi _{\rm{m}}}({\rm{x}}) = (\lambda - {\alpha _{\rm{m}}}){\phi _{\rm{m}}}({\rm{x}}),\\ {\rm{A}}_{\rm{m}}^ - {\rm{A}}_{\rm{m}}^ + {\phi _{\rm{m}}}({\rm{x}}) = (\lambda - {\alpha _{{\rm{m + 1}}}}){\phi _{\rm{m}}}({\rm{x}}). \end{array}$$
(0.2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Schrödinger, Proc. Roy. Irish Acad, A46, 9 (1940); 46, 183 (1941); 47, 53 (1941).

    Google Scholar 

  2. L. Infeld, Phys. Rev. 59, 737 (1941);

    Article  CAS  Google Scholar 

  3. T. Inui, Prog. Theor. Phys, 3, 168, 244 (1948);

    Google Scholar 

  4. L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951);

    Article  Google Scholar 

  5. H. R. Coish, Can. J. Phys. 34, 343 (1956);

    Article  Google Scholar 

  6. G. Hadinger, N. Bessis and G. Bessis, J. Math. Phys. 15, 716 (1974).

    Article  Google Scholar 

  7. W. Miller, Jr.,Mem. Amer. Math. Soc. 50, 5 (1964).

    Google Scholar 

  8. B. Kaufman, J. Math. Phys. 7, 447 (1966)

    Google Scholar 

  9. A. Joseph, Rev. Mod. Phys. 39, 829 (1967)

    Google Scholar 

  10. C. A. Coulson and A. Joseph, Rev. Mod. Phys. 39, 838 (1967).

    Article  Google Scholar 

  11. W. Miller, Jr., Lie Theory and Special Functions, (Academic, New York, 1968 ); Symmetry and Seperation of Variables, ( Addison-Wesley, Massachusetts, 1977 ).

    Google Scholar 

  12. W. Miller, Jr., Comm. Pure Appl. Math. 17, 527 (1964)

    Google Scholar 

  13. S. Strom, Ark. Fysik, 30 267 (1965)

    Google Scholar 

  14. W. Miller, Jr., J. Math. Phys. 9, 1163, 1175, 1434 (1968).

    Article  Google Scholar 

  15. W. Miller, Jr. Comm. Pure Appl. Math. 18, 679 (1965); 19, 125 (1966)

    Google Scholar 

  16. C. Itzykson, Comm. Math. Phys. 4 92 (1967).

    Article  CAS  Google Scholar 

  17. E. Celeghini and M. Tarlini, Nuovo Cimento B61, 265 (1982); B65, 172 (1982); B68 133 (1982).

    Google Scholar 

  18. A. O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory, ( University of Canterbury press, Christ-Church, 1972 ).

    Google Scholar 

  19. H.B.G. Casimir, Koninkhijke Academie van Wetenschappen te Amsterdam 34, 844 (1931);

    Google Scholar 

  20. H.B.G. Casimir, Rotation of a Rigid body in Quantum Mechanics, thesis, University of Leiden (1931).

    Google Scholar 

  21. C.K.E. Schneider and R. Wilson, J. Maths. Phys. 20, 2380 (1979).

    Article  Google Scholar 

  22. V. Bargmann, Ann. Math. 48, 568 (1947).

    Article  Google Scholar 

  23. A. O. Barut and E. C. Phillips, Comm. Math. Phys. 8, 52 (1968).

    Article  Google Scholar 

  24. N. M. Atakishiev, Theo. and Math. Phys. 56, 735 (1983).

    Google Scholar 

  25. A. O. Barut and R. Wilson, Phys. Letts. 110A 351 (1985)

    Google Scholar 

  26. A. O. Barut, A. Inomata and R. Wilson, Algebraization of Pöschl-Teller equation; Algebraization of second Pöschl-Teller equation, Morse-Rosen equation and Eckart-equation to be published.

    Google Scholar 

  27. L. C. Biadenharn and J. D. Louck, The Racah-Wigner Algebra in Quantum Theory ( Addison-Wesley, Mass. 1981 ).

    Google Scholar 

  28. H. Weyl, Königlichen Gesellschaft der Wissenschaflin zu Göttingen, Nachrichten page 37 (1909) and page 442 (1910).

    Google Scholar 

  29. See, e.g., A. Inomata and R. Wilson, “Path Integral Realization of a Dynamical Group,” in Proceedings of the Symposium on Conformal Groups and Structures, eds. A. O. Barut and H. D. Doebner ( Springer, Berlin, 1986 ).

    Google Scholar 

  30. I. H. Duru and H. Kleinert, Phys. Lett. 84B, 185 (1979);

    Google Scholar 

  31. R. Ho and A. Inomata, Phys. Rev. Lett. 48, 231 (1982).

    Article  CAS  Google Scholar 

  32. R. P. Feynman and A. R. Hibbs, Path Integrals and Quantum Mechanics ( McGraw-Hill, New York, 1965 ).

    Google Scholar 

  33. D. Peak and A. Inomata, J. Math. Phys. 10, 1422 (1969).

    Article  Google Scholar 

  34. See, e.g., B. Wybourne, Classical Groups for Physicists ( John Wiley, New York, 1974 ), p. 209.

    Google Scholar 

  35. A. Inomata, Phys. Lett. 87A, 387 (1982).

    Google Scholar 

  36. P. Kustaanheimo and E. Stiefel, J. Reine Angew. Math. 218, 204 (1965);

    Google Scholar 

  37. A. O. Barut, C.K.E. Schneider and R. Wilson, J. Math. Phys. 20, 2244 (1979).

    Article  CAS  Google Scholar 

  38. A. Inomata, Phys. Lett. 101A, 253 (1984).

    Google Scholar 

  39. P. Y. Cai, A. Inomata and R. Wilson, Phys. Lett. 96A, 117 (1983).

    Google Scholar 

  40. A. Inomata, in Path Integrals from meV to MeV, eds. M. C. Gutzwiller et al. ( World Scientific, Singapore, 1986 ).

    Google Scholar 

  41. G. Junker and A. Inomata, in Path Integrals from meV to MeV, eds. M. C. Gutzwiller et al. ( World Scientific,. Singapore, 1986 ).

    Google Scholar 

  42. A. Inomata and M. A. Kayed, Phys. Lett. 108A 9 (1985)

    Google Scholar 

  43. A. Inomata and M. A. Kayed, J. Phys. A18, 235 (1985).

    Google Scholar 

  44. A. O. Barut, A. Inomata and G. Junker, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Inomata, A., Wilson, R. (1986). Factorization-Algebraization-Path Integration and Dynamical Groups. In: Gruber, B., Lenczewski, R. (eds) Symmetries in Science II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1472-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1472-2_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1474-6

  • Online ISBN: 978-1-4757-1472-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics