Quantum Theory of the Free Electromagnetic Field

  • C. A. Hurst


A review of the quantization of the free electromagnetic field from the point of view of C*-algebras is presented. It is shown how a unified approach to quantization according to the radiation gauge, the Gupta-Bleuler indefinite metric, the Fermi supplementary condition and Dirac’s method of constraints can be obtained.


Lorentz Boost Field Algebra Radiation Gauge Fermi Approach Positive Definite Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. M. Dirac, Lectures in Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, New York (1964). Canad. J. Math. 2, 129 (1950) Canad. J. Math. 3, 1, (1951)Google Scholar
  2. 2.
    I. E. Segal, Mathematical Problems of Relativistic Physics, Providence, R.I. American Mathematical Society (1963).Google Scholar
  3. 3.
    S. N. Gupta, Proc. Phys. Soc. London A 63, 681 (1950). K. Bleuler, Helv. Phys. Acta 23, 567 (1950).Google Scholar
  4. 4.
    E. Fermi, Atti. Accad. Lincei 9, 881 (1929), ibid. 12, 431 (1930). Rev. Mod. Phys. 4, 125 (1932).CrossRefGoogle Scholar
  5. 5.
    G. Rideau, Lett. Math. Phys. 2, 529 (1978).CrossRefGoogle Scholar
  6. 6.
    A. L. Carey, J. M. Gaffney, C. A. Hurst, J. Math. Phys. 18, 629 (1977). A. L. Carey, C. A. Hurst, J. Math. Phys. 18, 1553 (1977)CrossRefGoogle Scholar
  7. 7.
    J. Manuceau, Ann. Inst. Henri Poincaré 8, 139 (1968).Google Scholar
  8. 8.
    F. Strocchi, A. S. Wightman, J. Math. Phys. 15, 2198 (1974).CrossRefGoogle Scholar
  9. 9.
    A. L. Carey, J. M. Gaffney, C. A. Hurst, Reports Math. Phys. 13, 419 (1978).CrossRefGoogle Scholar
  10. 10.
    A. L. Carey, C. A. Hurst, Lett. Math. Phys. 2, 227 (1978).CrossRefGoogle Scholar
  11. 11.
    N. Nakanishi, Suppl. Prog. Theor. Phys. 51, 1 (1972).CrossRefGoogle Scholar
  12. 12.
    J. D. Wright, Aust. J. Phys. 35, 661 (1982).CrossRefGoogle Scholar
  13. 13.
    J. Schwinger, Phys. Rev. 75, 651 (1949).CrossRefGoogle Scholar
  14. 14.
    H. B. G. S. Grundling, C. A. Hurst, Commun. Math. Phys. 98, 369 (1985).CrossRefGoogle Scholar
  15. 15.
    P. J. M. Bongaarts, J. Math. Phys. 23, 1881 (1982).CrossRefGoogle Scholar
  16. 16.
    Hendrik Grundling, C. A. Hurst, Algebraic Structures of Degenerate Systems, Physical Requirements and the Indefinite Metric. Adelaide University Preprint. (1985)Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • C. A. Hurst
    • 1
  1. 1.University of AdelaideAustralia

Personalised recommendations